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Executive Summary

This report develops a random field model that describes gas plumes in LWIR remote sensing
images. The random field model serves as a prior distribution that can be combined with LWIR
data to produce a posterior that determines the probability that a gas plume exists in the scene and
also maps the most probable location of any plume. The random field model is intended to work
with a single pixel regression estimator–a regression model that estimates gas concentration on an
individual pixel basis.
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Abbreviations and Acronyms

B: The bayes factors for each pixel, arranged in a vector. B j represents the Bayes factor cal-
culated for pixel j. When there are several images, Bk represents the Bayes factors from
image k; Bk

� �
B1k � B2k ������� B jk ������� .

FCP: False Call Probability.

λ: The apriori rate of occurrence of plumes at the site, measured in plumes/pixel.

P j: An elementary event (bit-map) that represents a plume originating from pixel x j. P0 repre-
sents a plume originating from x � 0, so P j is a translated version of P0. This is a 2D array
and is used to represent an arbitrary plume originating from j.

POD: Probability of Detection.

site, scene, image: The site is the area on the ground that being imaged. Several images of the
site are taken over time (with each image represented as a 2-dimensional matrix. When
the images from each time are assembled together into a 3D matrix, this is a scene.

S ji: A bit-map constructed from a plume shape library; This is the i’th member of the shape
library, with the plume origin translated to pixel x j.	

X: The variable X , (a sequence or array), organized as a vector. This notation is sometimes
dropped.

X̃: The variable X is to be considered a 2D array.

n: Represents the number of pixels in an image or at the site.

p: Number of images (time-slices) recorded.

m: Number of plume shapes in the plume library.
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R 
 event � : Odds-ratio associated with the occurrence of the event. That is;

R 
 event �
� Pr 
 event �
Pr 
 Z � 0 � (1)

I: Represents an elementary event in the event space of Z, a binary sequence of a certain fixed
length.

Z: The binary random field that describes plumes at the site.
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1.0 General Description of the Problem

The problem this report considers is plume detection at an industrial site using hyperspectral
LWIR images. This report focuses on the development of an algorithm that would improve
estimates obtained from existing algorithms by exploiting additional information available con-
cerning the plumes. The specific features of the detection scenario we intend to exploit are;

• The site of interest has been imaged several times with the hyperspectral LWIR system.

• The approximate shape (direction, length) of any prospective plume can be determined
from meteorological (MET) data.

• The plumes emanate from point-sources in the site. Consequently, the point of origin of a
plume is the same in all registered LWIR images.

The multiple images are assumed to have been taken in the space of minutes to hours; In other
words, in a short enough period of time that the background can be assumed to be constant, but
any plumes present will show movement from image to image, except at the point of origin. An
illustration of plumes conforming to such a scenario is illustrated in Figure (1.1). Three passes
over the site were made resulting in a variation of plume direction from pass to pass.

We will not attempt to estimate plumes from raw LWIR hypercubes. We will assume the exis-
tence of a good algorithm for detecting a gas (or set of gases) in a single pixel. Examples of
such “single-pixel” algorithms include the matched filter algorithms described in Burr and Hen-
gartner (2006), the Bayesian regression model described in Heasler et al. (2007), or the BMA

Figure 1.1. Plumes estimated from LWIR images taken 15 minutes apart
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model described in Burr et al. (2006).

1.1 Mathematical Assumptions

The model that we develop is formulated on the following assumptions;

• The a-priori probability that a plume originates in the scene at a particular point is constant.
That is, the probability of any pixel being the source of a plume is the same as any other.

• The plume shape is described probabilistically by means of a shape library. This library
will contain bit-maps describing single plumes of varying lengths, directions and widths,
each with an associated probability of occurrence. The library will be constructed from
MET data with plume direction determined by wind direction, lengths determined by wind
speed.

• The plume point of origin is assumed to be the same location in each image and represent
the extreme up-wind end of the plume.

• The LWIR spectrum associated with an image pixel, i, will be summarized by a Bayes
Factor, Bi representing the evidence of a plume being present in this particular pixel. This
Bayes Factor is computed by application of a single-pixel detection algorithm to the LWIR
data.

1.2 Mathematical Description of Desired Results

The problem will be treated in a Bayesian fashion, with Bayesian outputs expected. Conse-
quently the principal results will be posterior probabilities associated with the following events;

Single Plume Originates from pixel i: Pr � Plume at i �LWIR Data � , this is called POP or Proba-
bility of a Plume.

Plume Exists at Site: Pr � Plume �LWIR Data � , this is POP at a site.

k Plumes Exist at Site: Pr � k Plumes �LWIR Data �
Pr � Plume at i �LWIR Data � can be formed into a site-map of probabilities, with each pixel repre-
senting the probability that a plume might originate from that pixel.
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2.0 Random Field Model for Plumes

The mathematical model that we will use to describe plumes is called a random field model, see
Cressie (1991) for a detailed discussion. Let x represent the location of a pixel at the site and t
the time that the site was imaged, then Z � x � t � represents the binary random field that describes
plumes at the site. The definition is;

Z � x � t ��� �
0 pixel x is not in a plume at time t
1 pixel x is in a plume at time t (2.1)

Since the pixel locations are discrete, as well as the times, the stochastic process is actually a
lattice process defined only on the space-time points � x j � tk � , for j � 1 � 2 � 3 ����� n and k � 1 � 2 � 3 ����� p.
We will use the notation �Z to represent a vector containing all elements of Z � x j � tk � , in lexico-
graphic order and when one needs to refer to space-time pixel i ��� j � k � , the short-hand notation
Zi � Z � x j � tk � will be used.

In order to make probability statements about �Z, we must define the probabilities associated
with each elementary event in this process’s event space, U. An elementary event for �Z can be
represented by a binary number, I (i.e. a sequence of zeros and ones) of length np. When the
digits in I are properly placed in a 3D array, a bit-map image of plumes at the site will result. An
elementary event of particular interest will be represented by 0, which represents a sequence of
np zeros, with the associated bit-map representing no plumes at the site.

The random field model is defined by specifying the probabilities Pr � �Z � I � for all possible
I � U. While this is conceptually simple, actual specification is impossible for a general random
field because there are so many elementary events in U. For example, two images of a 100  
100 site would yield np � 20 � 000 and 220 ! 000 elementary events, and probabilities associated with
these events could not be computed on any computer.

To produce a solvable problem, our strategy will be to drastically reduce the number of elemen-
tary events that are associated with nonzero probabilities. The only elementary events that will
be allowed (i.e. have positive probability) will be those corresponding to bit-maps that have
“plume-like” shapes. This will reduce the number of entries in the elementary event space (at
least non-zero entries) to the order of 100n, which can easily be calculated and stored on a com-
puter.

To simplify calculations concerning this random field (specifically the calculation of it’s poste-
rior), we will describe the distribution in terms of an odds-ratio, R � I � , which is defined as;

R � I ��� Pr � �Z � I �
Pr � �Z � 0 � (2.2)

If the odds ratio can be defined over the elementary events, then their probabilities are given by;

Pr � �Z � I ��� R � I �
∑J " U R � J � (2.3)

So one can easily transform odds-ratios into probabilities. One should note that the transforma-
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tion is not computationally feasible if the number of non-zero elementary events is too large.

2.1 Single Pixel Regression Model

We assume that the hypercube data, Li # L $ x j % tk & (i.e. Li is an LWIR spectrum) is employed
by a Bayesian regression algorithm to calculate the probability that a plume exists in space-time
pixel i # $ j % k & . In other words, the probability;

Pr $ Zi # 1 ' Li & (2.4)

is calculated. If we have this probability, we can calculate the associated Bayes factor, which
describes the contribution that the data made to this probability, without the effect of any prior
information that might have been incorporated into the model. We want to strip such prior
information from the data, because it will be combined with new prior information in the form of
a random field model. This probability is related to the Bayes factor,

Bi # Pr $ Li 'Zi # 1 &
Pr $ Li 'Zi # 0 & (2.5)

via the formula;

Pr $ Zi # 1 ' Li &
Pr $ Zi # 0 ' Li & # Pr $ Li ' Zi # 1 & Pr $ Zi # 1 &

Pr $ Li ' Zi # 0 & Pr $ Zi # 0 & # Bi
Pr $ Zi # 1 &
Pr $ Zi # 0 & (2.6)

In other words, the posterior odds-ratio at pixel i is the Bayes factor times the a-priori odds-ratio.
The Bayes factor resembles the likelihood ratio statistic of classical statistics, except that it may
include model parameters that have been integrated out. For example, if the spectrum Li is
described by the distributional model f1 $ Li ' θ & when a plume exists and f0 $ Li ' θ & when it does not,
then;

Bi #)( f1 $ Li ' θ & p1 $ θ & dθ( f0 $ Li ' θ & p0 $ θ & dθ
(2.7)

In practice, it is difficult to perform the integration over the model parameters (as represented
by θ, see Kass and Raftery (1994)), so approximations to the Bayes factor have been devel-
oped. For example, if maximum likelihood was used to produce an estimate θ̂, then the standard
approximation for Bi is;

Bi # f1 $ Li ' θ̂ &
f0 $ Li ' θ̂ & (2.8)

which is the likelihood ratio statistic to test for the existence of a plume.

In the calculations that follow, we will typically produce the Bayes Factor by dividing the single-
pixel posterior by the prior odds-ratio. However, one can also consider using the posterior odds-
ratio in place of the Bayes Factor. When the odds-ratio in Equation (2.6) is used, the resulting
elementary event odds-ratios are simply off by a constant factor. Hence the “true” posterior
differs from the calculated posterior by this constant factor.

We will make the assumption that the data, Li1, and Li2 originating from two separate pixels
are independent of each other, so that the multi-dimensional analog of the Bayes factor can be
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computed through multiplication. In other words;

Pr *,+L -�+Z . I /
Pr * +L - +Z . 0 / . np

∏
i 0 1

Pr * Li - Zi . Ii /
Pr * Li -Zi . 0 / . np

∏
i 0 1

BIi
i . ∏ * BI / (2.9)

where the notation ∏ * X / represents ∏i Xi for any vector X . This assumption is probably the
most questionable assumption made in construction of the model. Because of background
radiation, the spectrum of pixel i can be highly correlated to its neighbors.

2.2 Posterior for Random Field Model

This section will calculate the posterior distribution for +Z, assuming a prior specified by Equa-
tion (2.2), and hypercube data, +L. In other words, we want to calculate the posterior distribution,
Pr *1+Z . I - +L / , or equivalently the posterior odds ratio;

R * I - +L /
. Pr * +Z . I - +L /
Pr * +Z . 0 - +L / (2.10)

Using a single-pixel model, the hypercube data has been distilled into a Bayes factor at each pixel
location, i, which is denoted by Bi and defined by Equation (2.5). The formula for the posterior
odds-ratio, R * I -L / is given by;

R * I - +L / . Pr *2+Z . I - +L /
Pr * +Z . 0 - +L /. Pr * +Z . I / Pr * L - +Z . I /
Pr * +Z . 0 / Pr * L - +Z . 0 /. R * I / ∏

i
BIi

i

or. R * I / ∏ * BI / (2.11)

This formula shows that the posterior odds-ratio, R * I - +L / is the prior odds-ratio times a product
of Bayes factors, a formula that resembles the single pixel formula presented in Equation (2.6).
Equation (2.11) is the basic formula we will use to calculate posterior probabilities for elemen-
tary events.

2.3 Priors and Associated Posteriors

In this section, we will develop random field models with increasingly complex elementary
events (as described by their priors). The reason for developing several models is because the
more complex models can be computed in terms of the less complex models, and this allows us
to focus on complicating details one at a time instead of all at once.

The models discussed are;

Single Plume Model: We assume a single plume, of specific shape might exist in one image.
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Thus there is at most one plume in the image and there is only one image (time-slice) of the
site.

Multiple Points of Origin Model: We assume that more than one plume might exist in the
image. Each plume would have a different point of origin. As in the previous case, there
is only one image of the site, and the plumes can have only one shape.

Multiple Shape Model: We assume that the plume shape might be any of the shapes present in
the plume library in a specific image. This is the single plume model with an allowance
for different plume shapes.

Multiple Image Model: Multiple images (time=slices) have been made of the site, and at a
possible point of plume origin the plume must exist in all of the the images. However, it
might not have the same shape.

General Plume Model: This assumes multiple shapes and points of origin, and multiple images
(time-slices).

2.3.1 Single Plume Model

To obtain a tractable prior, the idea is to restrict the elementary events I 3 U to a set that can be
produced on a computer. Except for the elementary event 0, each elementary event is supposed
to describe plumes in the images, which can be indexed by their point of origin.

We will begin by developing a “one-plume” model, show how the posterior can be calculated for
this restrictive model, and then extend the model by including multiple plumes in a site, multiple
plume shapes, and finally multiple time-slices. Initially, we will assume;

• There is only one LWIR image of the site (i.e. one time-slice).

• The a-priori probability of a plume originating from any pixel j is λ, (with 1 4 nλ repre-
senting the a-priori probability of no plume being at the site).

• At most, only one plume can exist at the site. Hence, there are either no plumes at the site
(with prior probability 1 4 nλ) or exactly one (with probability nλ).

• The plume originating at location x j has the same shape as the plume at location x 5 0,
consequently the bit-map describing a plume at location j, P j, is given by a translation;

P j 6 x 785 P0 6 x 4 x j 7 (2.12)

• This plume can have only one shape. The plume shape is described by a single bit-map,
P0 6 x 7 , representing a plume that originates from the origin x 5 0. P0 6 x 7 , will always
include pixel x 5 0, so P0 6 0 7�5 1.

With these assumptions, the only non-zero elementary events for 9Z 5 I correspond to the bit-
maps, I 5 0, and I 5 P j for j 5 1 : 2 : 3 :<;�;�; n. These assumptions concerning plume shape have
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reduced the elementary event space to a tractable number (n = 1). Furthermore, since P j is
simply a translation of P0, the posterior odds-ratio can be written as a convolution of the Bayes
Factors with the P0 bit-map and computed quite quickly using a fast Fourier transform. The
convolution analog to Equation (2.11) is;

log > R > P j ? @L A<A�B log > R > P j A�AC= ∑
k

P0 > xk D x j A log > Bk A (2.13)

Or, if we let R̃, P̃0 and B̃ represent 2D arrays, then the above formula can be written as the convo-
lution;

log > R̃ ?L AEB log > R̃ AF= P̃0 G log > B̃ AB log > λ
1 D nλ

AC= P̃0 G log > B̃ A (2.14)

The convolution formula Equation (2.14) ignores the difficulties that occur on the image edges.
If a plume originates at a pixel near the image edge, it will extend beyond the image and must be
truncated to the image pixels. To make the convolutions produce correct results, on needs to pad
the Bayes factor array, B̃, with 1’s on the edges; A Bayes factor of 1 indicates no evidence for the
existence of a plume or its absence.

The log of an odds-ratio log > R A , is also called the negepotential function (see Cressie (1991),
pg414), so the formula for the posterior could have been developed in terms of a negepotential
function instead of the odds-ratio, R. It should also be noted that the odds-ratio for the no-plume
event, 0 is also easy to calculate. By definition, R > 0 ?L A�B 1.

Equation (2.14) allows us to calculate the posterior probabilities associated with a plume at the
site, (site POP) and a plume originating from pixel j, (POP at j) which is the desired objective.

2.3.2 Multiple Points of Origin

In the previous section, we were able to calculate the posterior probabilities using a prior that
assumed at most one plume existed at the site and therefore in the image. This assumption will
not be reasonable for many sites. In fact, one could argue that it is more likely to have either no
plumes at the site (plant shut down), or several (plant operating).

In this section, we extend the “at most one plume” prior into a multiple plume prior and find
that the multiple plume model is really based on the at-most-one-plume model. In other words,
fitting the one-plume model and then combining the probabilities in appropriate fashion will yield
results about multiple plumes.

The most natural assumption for creating a multiple plume random field is to assume that;

• the number of plumes at the site is Poisson, with the probability of k plumes at the site
given by;

Pr > k Plumes A
B exp > D nλ A > nλ A k
k!

(2.15)
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• and the points of origin for the k plumes are independent of each other and randomly
chosen from the site-map. Hence, the probability that the k plumes originate from pixels
j1 H j2 I�I�I jk is 1 J nk.

The elementary event corresponding to two plumes originating from locations j1 and j2 is repre-
sented by the bit-map P j1 K P j2 L P j1P j2. If the plumes are far enough away from each other so
they don’t intersect, then the two-plume bit map reduces to P j1 K P j2, and we can consider this to
be a reasonable approximation because the probability of two plumes being close to each other is
small. In like manner, the bit-map containing k plumes at j1 H j2 I�I�I jk can be approximated by

P j1 K P j2 K I�I�I K P jk (2.16)

We now explicitly derive the posterior odds-ratio associated with k M 1 H 2 and then present the
formula for arbitrary k. For one plume, occurring at location j, the prior is;

R N P j O M Pr N Plume originating at j O
Pr N No plumes in site OM exp N L nλ O N nλ O 1

n
exp N L nλ OM λ (2.17)

and the posterior is;

R N P j PL O M R N P j O ∏ N BP j OM λ∏ N BP j O (2.18)

For 2 plumes at locations j1 H j2, the prior is;

R N P j1 K P j2 O M Pr N Two plumes at j1 and j2 O
Pr N No plumes in site OM exp N L nλ ORQ nλ S 2

2!
1
n2

exp N L nλ OM λ2

2!M 1
2!

R N P j1 O R N P j2 O (2.19)

Substituting this expression into Equation (2.11), we find that the posterior odds-ratio is;

R N P j1 K P j2 P L O M R N P j1 K P j2 O ∏ N BP j1 T P j2 OM 1
2!

R N P j1 O R N P j2 O ∏ N BP j1 O ∏ N BP j2 OM 1
2!

R N P j1 P L O R N P j2 PL O (2.20)
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Using similar algebra, one can show that for k events the formula is;

R U k

∑
i V 1

P ji W L X
Y 1
k!

k

∏
i V 1

R U P ji WL X (2.21)

In other words, we can calculate multiple-plume odds-ratios from the single-plume odds-ratios,
R U P j WL X . Because of the nature of equation (2.21), we need not consider all possible multiple
plume combinations; We know the only plume combinations with significant probability origi-
nate from the locations where R U P j W L X[Z�Z 0. This set of locations will most likely be small, and
thus we need only compute all posterior odds-ratios on the subsets of these locations.

2.3.3 Multiple Shape Model

Assume that we have compiled a library of plume shapes S0i, i Y 1 \ 2 \ 3 ]�]�]m, with the probability
that plume shape i might occur being hi. Each shape S0i, represents a bit-map with the plume
origin centered on location x Y 0, while S ji represents S0i translated to pixel j. The formula
for calculating the posterior odds-ratio for one of these shapes is really the same as that given in
Equation (2.18), except that the prior probability is modified by hi. Let us define;

R U S ji X
Y Pr U Plume originating at j with shape i X
Pr U No plume X (2.22)

so that,

R U S ji WL X^Y R U S ji X ∏ U BS ji XY hiλ∏ U BS ji X (2.23)

The odds-ratio for a plume originating at pixel j is therefore given by;

R U j WL X_Y R U Plume at j WL XY ∑
i

R U S ji W L XY λ∑
i

hi ∏ U BS ji X (2.24)

2.3.4 Multiple Image Model

We assume that p images (time-slices) have been recorded, and that any plume in the image must
have a common point of origin, but otherwise the shape can vary from image to image. The
Bayes-factor data from image k is identified by Bk (Realize that Bk is not a single value as in
the previous sections, but a 2D array). Posterior odds-ratios associated with image k will be
identified by the notation R Ua` WLk X . Also let I Y i1 \ i2 \<]�]�]�\ ip represent a set of p plume shapes
chosen from the shape library, with the elementary event corresponding to S jI defined by;

S j b ik present in time-slice k Y 1 \ 2 ]�]�] p (2.25)
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Then the prior probability of occurrence is given by the odds-ratio;

R c S jI d
e λ∏
k

hik (2.26)

In other words, the shape in time-slice k is independent of the other time-slices.

With this prior placed upon the elementary events, the posterior becomes;

R c S jI fL d e R c S jI d ∏
k

∏ c BS j g ik
k de λ∏

k
hik ∏ c BS j g ik

k d
ore 1

λp h 1 ∏
k

R c S j i ik f Lk d (2.27)

The last step follows by substitution of Equation (2.23). Hence the posterior for a multiple
image data-cube can be computed by first computing the posterior for each time-slice and then
multiplying them together. Furthermore, one need not calculate the odds-ratios for all elemen-
tary events but only for those in which the single time-slice odds-ratios, R c S j i ik f Lk d are large.

If one attempted to calculate the odds-ratio for a plume originating at pixel j using Equa-
tion (2.27), one would have to sum over I, resulting in a sum containing mp terms. It is possible
to reduce arithmetic operations by applying the distributive law;

R c j fL d^e R c Plume Originates at j fL de 1
λp h 1 ∑

I
∏

k
R c S j i ik f Lk de 1

λp h 1 ∏
k j∑i

R c S ji f Lk dake 1
λp h 1 ∏

k
R c j fLk d (2.28)

with R c j fLk d representing the odds-ratio of a plume being at pixel j in time-slice k, and computed
with Equation (2.24).

2.3.5 General Model

One can combine the modifications discussed in the previous sections to produce a posterior
calculation that includes (1) multiple plume shapes, (2) multiple plumes at a site, and (3) multiple
time-slices. First note that the odds-ratios of all elementary events associated with such a model
cannot be calculated. For example, if the site contains n e 104 pixels, p e 4 time-slices, and
m e 100 plume shapes, then the number of elementary events would be;

nmp e 104 l 1004 e 1012 (2.29)

a trillion events, too large to calculate on present computers.
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To produce a successful calculation, we exploit Equation (2.28), which can be calculated, and
also use the fact that most of the elementary events should be nearly zero. Here is an outline for
the calculation;

1. Calculate all posterior odds-ratios R m S ji n Lk o j p 1 q 2 q 3 r�r�r n, i p 1 q 2 q 3 r�r�rm, and k p 1 q 2 q 3 r�r�r p.
There are mnp such odds-ratios, a tractable number.

2. Calculate the odds-ratios, R m j nL o , associated with a plume originating from pixel j using
Equation (2.28).

3. Identify locations, j, where R m j nL ots�s 0 and form these locations into the set A1. This is
the set of possible plume origination sites.

4. To calculate probabilities of plume pairs, form the set A2, the set of pairs i1 q i2 u A1 wherem 1 v 2 o R m i1 nL o R m i2 n L o8s�s 0, and use Equation (2.19) to calculation the pair-wise odds-ratio.
Calculate similar odds-ratios for triples, 4-tuples, etc. and form A3, A4, etc. It is assumed
that these sets will be small.

5. Convert posterior odds-ratios into posterior probabilities using Equation (2.3). These
probabilities are the desired output of the calculation.
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3.0 Usefulness of the Random Field Model: POD Curves for Some
Benchmark Scenarios

In this section, we calculate the false call probability (FCP) and probability of detection (POD)
performance for a plume detection statistic derived from the Bayesian Plume Model developed in
Section (2). This Bayesian detection statistic is compared to two alternative detection statistics
to gauge its performance. The alternative detection statistics represent two of the most com-
monly used plume detection techniques.

Our objective for this calculation is to choose a simple scenario that can be easily calculated but
will show how important plume information might be. If the random field model does not offer
significantly improved detection under ideal conditions, then it is not worth pursuing.

The scenarios we base these calculations upon assume that the random field model is correct;
That is, it correctly describes the actual shape of the plume present in the data and the distribu-
tional properties of the data. To calculate FCP and POD, one must describe a null and alternative
distribution for the data. The null distribution describes the resulting image data when no plume
exists, while the alternative distribution describes the image date when a plume (or many plumes)
exist. With a little reflection, the reader can see that for a problem as complicated as this, there
is no single null or alternative distribution. For example, the null distribution is influenced by
the site background; Each different site background produces a different null distribution. In
a similar manner, the alternative distribution is influenced by temperature contrast, dimensions
of the plume, gas concentration, etc.; Different assumptions concerning these variables produce
different alternative distributions.

A complete description of the scenario assumptions is given in Appendix A, along with a deriva-
tion of the null and alternative distributions for three detection statistics. The three detection
statistics evaluated consist of;

Site POP, Tbayes: This is the detection statistic produced by the random field model.

Maximum Statistic, Tmax: The maximum of all the single pixel regressions results. This is
equivalent to applying a detection threshold on the single-pixel regression results and is the
most direct way to use the single-pixel results for detection.

Smoothed Statistic, Tsmooth: This smooths the single-pixel results before thresholding. This
detection methodology would be the most obvious way to incorporate the plume shape into
a detection algorithm.

We calculate the alternate distributions for the following scenarios;

Base Case: The SNR for the plume is 2, the plume length is 5 pixels, and two images (time-
slices) have been taken of the site.

SNR 1: Same as base case, but SNR has been lowered to 1.
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SNR 5: Same as base case, but SNR has been raised to 5.

Plume Length 2: Same as base case, but the plume length has been lowered to 2.

Plume Length 10: Same as base case, but the plume length has been raised to 10.

Number Images 1: Same as base case, but the number of time-slices has been lowered to 1.

Number Images 3: Same as base case, but the number of time-slices has been raised to 3.

3.1 Comparison of Test Statistics

Before presenting the simulation results in detail, it might be informative to mention some the-
oretical results. Tbayes represents the standard Bayesian statistic used in decision theory. A
well-known result (Ferguson (1967), pg59) from decision theory shows that Bayes decision pro-
cedure is admissible; In other words, the ROC curve associated with Tbayes should always “be
equal to or above” the ROC curve associated with any other test statistic for plume detection (at
least image-wide plume detection). So, theory would lead us to expect the ROC for Tbayes to be
“better than” that of Tmax or Tsmooth, the real question is by how much.

Figure (3.1) displays the ROC curves(a) for the three test statistics using the scenario outlined
in the previous sections. Note that FCP has been logged, so that we can examine performance
in FCP regions of interest; In a typical problem, one would not be interested in running the
detection algorithm with a FCP much greater than 1%. The defining scenario variables (i.e.
SNR, plume length, # of time slices) are listed in the figure headings and represent those of the
Base Case scenario described previously.

The most obvious conclusion one can draw from Figure (3.1) is that the plume information
utilized by both Tbayes and Tsmooth dramatically improves detection performance, as compared
to Tmax. Also, Tbayes is substantially better than Tsmooth, with its POD approximately double
that of Tsmooth (when FCP w 1%). From these results, we can conclude that incorporation of
spatial/temporal plume information into the detection algorithm can make a huge difference in
POD, if correctly done.

In the following series of ROC plots, we have varied the scenario variables SNR, plume length,
and number of time slices, with the objective of obtaining a better understanding of when plume
information is really important in a detection scenario. For example, if SNR is large, then even
Tmax will work, but how large does SNR have to be?

In Figure (3.2), SNR is varied from 1 to 5. As one can see from the ROC plots, this range does
seem to bound acceptable performance for all three statistics; With SNR x 1, none of the three
statistics can detect plumes acceptably, while with SNR x 5, all three do an almost perfect job.
So plume information is important for “weak plumes”, with a weak-plume defined by SNR y 2.

Figure (3.3) shows the effect of plume length on POD. With a plume length of 2 pixels, Tmax has

(a) A ROC curve plots POD versus FCP
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Figure 3.1. Detection Performance of Tbayes, Tmax, and Tsmooth for Base Scenario
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Figure 3.2. Detection Performance for different SNR
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low POD (but Tbayes is much better than the others, producing a POD z 20% at FCP z 1%).
On the other hand, a plume length of 10 pixels, makes detection a virtual certainty for Tbayes and
Tsmooth but not for Tmax. It is surprising that Tmax does so badly with such a large plume. This
supplies further evidence of the value of plume information in detection.

Figure (3.4) shows the effect of different numbers of time-slices. In the first case, the number of
time slices has been restricted to 1, and in this case we see that Tbayes and Tsmooth deliver almost
identical performance. The formulas for Tbayes and Tsmooth are algebraically distinct, so it is a
surprise that they deliver similar numerical results. In this case, for example, Tsmooth has the
form;

Tsmooth z max
S { pixels

S | Y (3.1)

with the maximum being taken over all pixels in the smoothed image, and over all shapes in the
library. In contrast, Tbayes involves the transformed sum;

Tbayes z ∑
S { pixels

exp } γ } S | Y ~ n � γ
2 �<� (3.2)
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Figure 3.3. Detection Performance for different Plume Lengths
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If the number of shapes in the shape library were increased (these scenarios use a shape library
with only three members), one might expect the performance Tsmooth and Tbayes to diverge, with
Tbayes being better. On the other hand, with real data, which does not have the exact distribu-
tional properties described by the model, one might expect Tsmooth to behave better than Tbayes.
In other words, Tsmooth might be more robust to distributional deviations than Tbayes.

When we increase the number of time-slices, the performance of Tbayes becomes dramatically
better than Tsmooth, indicating that the temporal information Tbayes incorporated into the random
field model is very important. This temporal information is that the plume origin pixel is the
same in all time-slices. With three time slices, Tbayes can detect a weak plume with near cer-
tainty (i.e. POD � 1), even at the lowest FCP rates.

These ROC curves show that the Bayesian plume model can deliver dramatically improved
detection performance when the plume is small and weak. Such a model is worth further consid-
eration.
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Figure 3.4. Detection Performance for different Numbers of Images (Time-slices)
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4.0 Application of the Random Field Model to Data

The results in the last section show that the random field model would produce dramatically bet-
ter performance than single-pixel regression if the data and detection scenario exactly conformed
to model assumptions. Of course, this is never the case so an important question to be answered
is; How well does the model perform when the assumptions are only approximately satisfied?
We would like the detection procedure to work well on real data. Specifically, we would like
the random field model to produce realistic Probability of Plume (POP) estimates, and correctly
locate any existing plume.

In this section, these questions are examined by applying the model to a real LWIR data set. In
this exercise, certain problems with the model became apparent, and were rectified. (see Section
4.3)

Figure 4.1. LWIR Spectrum from Site
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4.1 Description of the Data

The data set employed for the test contained 10 images of an industrial site, with the time
between images being approximately 10-20 minutes. The site was imaged with an LWIR instru-
ment that expressed the spectrum in 128 bands. An example of a typical LWIR spectrum from
this site is presented in Figure (4.1). In this Figure, the blue-green line represents the actual
spectrum, while the red and black lines represent results from the regression fits. The black
spectral line (which is almost identical to the blue-green spectra) represents the background
spectra (i.e. spectra without any plume gases), while the red spectra represents the spectra we
would see from a plume that is optically opaque. The space between the black and red spectra is
caused by the “emissivity contrast” between the atmosphere and background. If the emissivity
contrast was zero, it would not be possible to see any plume over the pixel. From a regression
perspective, a small emissivity contrast would result in a large standard deviation for the gas
concentration estimates.

Figure 4.2. Brightness Map of Site
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An actual plume would produce a weighted average between the red and black spectra, with the
weights being determined by gas concentration and absorbance. The spectrum in Figure (4.1)
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actually originates from a pixel containing a strong gas plume, so one can see that we are try-
ing to find effects that are not obvious in the spectrum; The plume gases have created a small
depression in the blue-green spectra at wavenumber 950.

Figure (4.2) presents a brightness map of the site. As one can see from the map, the average
temperature at the site is about 300K. One can also see the road grid in the map, building out-
lines, and plant piping. These features all have different emissivities, and different temperatures,
which cause a different capability to estimate gas concentrations over the different features.

The true-state of the site is not known, so we cannot be certain of the plumes that actually exist
in the images. We have used the LWIR data to produce a best guess of the true state for the
site. In Appendix B, the concentration SNR’s (i.e. gas concentration estimate over its standard
deviation) are plotted from the regression fits. From the plots, two gas plumes are obvious, but
we are really interested in how well the random field model can find weak plumes (with a low
false call rate). We have attempted to identify weak plumes by visually examining a movie of
each gas SNR and identifying plume-like features. A plume-like feature is a shape that has a
definite point of origin but otherwise moves as time progresses.

Table (4.1) presents our best guess as to the plumes present (i.e. under the column labeled “True
State”. In other words, we will be comparing the random field results to that produced by human
evaluation.

Table 4.1. Best Estimate of Plumes in Image

No. Pixels With Random Field True
Gas SNR � 2 SNR � 4 � 5 Model POP State

1 701 50 1 no plume
2 3089 126 1 no plume
3 654 152 1 strong plume
4 579 183 1 strong plume
5 10 1 0 no plume
6 214 45 1 weak plume
7 64 14 1 weak plume
8 45 11 1 no plume
9 103 27 1 no plume

10 27 11 1 no plume
11 6293 87 1 no plume
12 2221 66 1 no plume
13 20 5 1 no plume

True State determined by visual examination of Data.
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4.2 Results of Model Fit

The random field model was fit to the data and these results are presented in Table (4.1), (in
column 4) for each gas. To allow comparison to alternate test statistics, we also compiled the
number of pixels whose SNR was greater than 2 and 4.5. If there were no plumes and the SNR
statistic was behaving correctly, we would expect 2.5% of the pixels (i.e. approximately 450)
to be above 2, and there would be a 5% chance that 1 or more pixels would be above 4.5. In
other words, SNR � 4 � 5 produces a plume detection test for a 5% level of significance. From the
results in this table, one can see that use of the single pixel SNR produces a test with a high false
call rate; All of the 13 gases in the table are judged to be present when using a detection threshold
of 4.5.

We had hoped that the random field model would do better than simple thresholding, but it also
suffers from a high false call rate. The probability of plume (POP) results for the random field
model are presented in column 4 of Table (4.1). Only gas 5 is ruled to be absent; all other gases
have a POP of 1, indicating the definite presence of a plume. The random field model also
suffers from a high false call rate and does not produce correct POPs. It is obvious that the
distributional assumptions that the random field model rests upon are not correct for this data.

A careful examination of the data revealed several problems with the model assumptions. The
major problem had to do with the use of SNR to define the Bayes factor. Our model assumes
that the SNR are independently distributed from pixel to pixel. However, the SNR plots in
Appendix B show that this is not the case; These plots display background shapes which cause
correlations between adjacent pixels. One might ascribe this problem to a malfunctioning
regression fit that is not capable of removing all the background effects, but the problem really
is caused by use of SNR to define the Bayes factor used in the random field model. Since
the signal noise ratio is the gas concentration estimate divided by its standard deviation (i.e.
SNR � Ĉ � sd � Ĉ � , background features will appear in the SNR if they are present in the denomi-
nator, sd � Ĉ � , but not the numerator Ĉ. So even if the pixel regression eliminates the background
effects from Ĉ, they may still be present in sd � Ĉ � and cause pixel-to-pixel correlations in the
SNR.

A little reflection concerning sd � Ĉ � leads us to conclude that this standard deviation will always
be strongly correlated to background because it is inversely related to temperature contrast; A
plot of sd � Ĉ � roughly displays the temperature difference between ground and air. Figure (4.3)
illustrates this effect, by plotting Ĉ, sd � Ĉ � , and SNR � C � sd � C � for gas 4. One can see that
sd � C � basically provides an image of the background, with the road network displaying the
smallest temperature contrast, and the buildings the greatest.

Another problem is related to the use of binary plume shape in the random field model. (i.e. the
plume is either present or absent in a pixel). In reality the plume should have a shape described
by gas concentration. Use of a binary shape forces one to choose an arbitrary threshold that
defines when a plume ceases to exist. For example, the binary plume model we have adopted
defined a plume to be present when the SNR � 2 and absent when SNR � 2. Of course, the use
of 2 to define the presence of a plume is an arbitrary selection; One could have used 1 or 0.5 as
the threshold. One would like to employ a definition of a plume that did not rely on an arbitrary
threshold.

4.4



Figure 4.3. Example of Correlations Caused by Background
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Finally, an examination of the diagnostics produced by the pixel regression fits indicated that
there were problems with about 0.5% of the fits. In these fits, the RMSE was about twice as
large as it should be, indicating that either the instrument was malfunctioning, or the background
model was inadequate for the data. These fits frequently produced unrealistic temperature
contrasts (of up to 100K). Visual indications of such data problems are present in the SNR plots
of Appendix B. Some of the plots display horizontal stripes, which are probably caused by a
malfunctioning or mis-calibrated detector in the instrument.

To rectify the problems discussed above the following modifications were made to the random
field model;

1. Pixels with RMSE � 1 � 5 error were eliminated.

2. Binary plume shapes were replaced by shapes defined in terms of gas-concentration. The
Bayes Factor was also defined in terms of concentration, C, and its standard deviation,
sd � C � , so that the correlations in sd � C � could be accounted for.

3. Static Background shapes are removed from multiple images using ANOVA.
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These modifications are presented in detail in the following sections.

4.3 Continuous Plume Shape Modification

This development assumes that the plume is expressed in terms of concentration, such as a Gaus-
sian plume. A plume originating at pixel i, denoted by Pi ��� Pi1 ����� Pik ������� , is a 2-dimensional
array with Pik representing the relative concentration of the gas in pixel k. When Pik � 0, the
plume is not present in that pixel. We assume that Pi describes the shape of the actual plume
well, but not its magnitude. The actual plume is given by the term αiPi, where αi represents the
unknown source emission from pixel i, in units of ppmM.

The single-pixel regression model produces a concentration estimate for pixel k of Ĉk which
should be estimating the value αiPik with uncertainty (SD) of σk (or a precision of Wk � σ � 2

k ).
In other words, the single-pixel regression supplies us with values of Ĉk and uncertainties σk.
Given this framework, one can use regression to estimate the prospective source emission, αi and
construct a Bayes Factor from this estimate.

The regression estimate for αi is;

α̂ � ∑k PkWkĈk

∑k P 2
k Wk

(4.1)

and with variance;

Var � α̂ �
��� ∑
k

P 2
k Wk � � 1 (4.2)

Note that α̂i and var � α̂i � can be computed at each pixel by convolutions. The convolution
formula for these two statistics are;

Var � α̂ �
��� P 2 � W � � 1 (4.3)

and

α̂ ��� P � � WĈ �<� Var � α̂ � (4.4)

In other words, these convolution formulas provide us with a computationally efficient way to
calculate α̂ for an entire image.

α̂i is approximately normally distributed, so the Bayes Factor for the origination of a plume at
pixel i is;

Bplume � i � Pr � αi � T � α̂i � Var � α̂i �<�
Pr � αi � 0 � α̂i � Var � α̂i �<�� Φ �<� α̂i � T ��� sd � α̂i �<�

Φ � � α̂i � sd � α̂i �<� (4.5)

We have included a threshold of T on the plume source for generality. If nothing is known about
the source, one can set T � 0, and this is the threshold we will use.
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This Bayes factor, Bplume ¡ i, replaces the expression BI in Equations (2.11) and (2.24) so that the
posterior odds ratio now becomes;

R ¢ Pi £ Ĉ ¤8¥ R ¢ Pi ¤ Bplume ¡ i (4.6)

and

R ¢ Plume at i £ Ĉ ¤
¥ λ∑
k

hkBSik (4.7)

with shapes in the plume library indexed by k.

The plume shapes we will employ are derived from a Gaussian plume model. A Gaussian plume
models is defined in terms of the following parameters;

x: Distance (i.e. pixel coordinates) are measured in terms of Meters.

Plume width at source: Is given by σ0M.

Plume Diffusion Constant: The formula for plume width x2 pixels downwind is given by¦
σ2

0 § σ2
1

x1

v
(4.8)

Hence σ2
1 is given in units of M2 ¨ sec There are several formulas for plume “diffusion,”

depending on the nature of the flow such as laminar or turbulent flow.

Wind Speed: The wind speed is v M/sec.

Emission: Emission at source is E0 M3 ¨ sec of gas.

Concentration: Concentration of target gas at point is measured as M3 of gas per M2 of area.
This is equivalent to the instrument measurement of ppmM.

So the plume concentration at point ¢ x1 © x2 ¤ , where x1 is the downwind direction and x2 is the
cross-wind direction, and the plume origin is ¢ 0 © 0 ¤ , is;

E0

v
φ ¢ x2;0 © σ ¢ x1 ¤<¤ (4.9)

with

σ ¢ x1 ¤ 2 ¥ σ2
0 § σ2

1
x1

v
(4.10)

The regression parameter, α defined above is therefore equal to;

α ¥ E0

v
(4.11)

In other words, the plume regression fits can also supply an estimate of gas emission.
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Figure 4.4. Gaussian Plumes used in the Random Field model
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Figure (4.4) presents a library of 9 Gaussian plumes used in the improved random field model.
These plumes are produced by using 3 values for the diffusion constant σ2 to produce wide,
intermediate and thin plumes. Three plume directions are also represented in the plume library

Plume direction: 25 ª 40 ª 55o, centered on the Gas 4 plume in Appendix 1.

σ0: 0.75 pixels (A pixel has a dimension of approximately 2M).

σ1 «­¬ ® v ¯ : 0.58, 0.33, and 0.28 pixels.

The plumes represented in the library have also been normalized so that their maximum value is
1, and so that distance is measured in pixels. If Lp represents the dimension of a pixel, then the
formula for converting an α estimate from the regression to an emission is;

E0 ° αv ± 2πσ0 (4.12)
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4.4 Background Subtraction for Multiple Images

The concentration data at pixel location i and time t is represented by Ĉit and an associated
standard deviation of σit . Then the estimate for the background is;

µi ² ∑
t

WitĈit (4.13)

Wit ² 1 ³ σit

∑i 1 ³ σit
(4.14)

And the background-subtracted data (BSC) is;

BSCit ² Ĉit ´ µi (4.15)

4.5 Results for the Improved Model

The improved random field model was fitted to the 13 gas concentrations given in Appendix B,
with the results presented in Table (4.2). Column 4 in this table presents the POP from this
model, while Column 6 indicates whether or not the plume (if it exists) was correctly located by
the model. As one can see, the calculated POP (probability of a plume) is now much more
reasonable. The strong gas plumes were assigned a POP of 1, indicating a high degree of
confidence in a plume. Also, the strong plumes were correctly located by the procedure (see
Appendix C).

The false call performance was dramatically improved; With the improved model, all “blank”
(i.e. no plume) images were assigned a POP of 0.

However, the performance for the weak plumes is more disappointing; Only one of the three
weak plumes (gas 6) was detected with a POP of 95%. One could argue that gas 6 shouldn’t be
scored as a detection, because it was not correctly located. The improved random field model
isn’t detecting the weak plumes identified by the human eye.

A review of the weak plume fit diagnostics indicates that one effect is causing the poor detection
results; The plumes labeled as “weak” plumes in Table 4.2 could more reasonably be categorized
as intermittent plumes. In other words, the plumes disappear in several of the time slices. For
example, the three weak plumes in Table (4.2) only exist in about 40% of the time-slices. This
feature could either be caused by variations in the speed of the wind, or by variations in the
stack emission. At any rate, the random field model expects to find the plume in all time-slices
and when the plume is absent in even one time-slice, it is assigned low probability of existence.
Therefore, an assignment of a low POP to the weak plumes in the table is not unreasonable.

Appendix C displays plots of the Improved Random Field Model fits. If there is a total POP µ
0 ¶ 5%, The pixels with POP greater than 0.5% are marked with a plus. Appendix C displays log
of the Bayes factor (equivalent to POP) and also the raw signal noise ratio (SNR) for the purposes
of visual comparison.
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Table 4.2. Results from Improved Random Field Model

No. Pixels With Random Field True Correct
Gas SNR · 2 SNR · 4 ¸ 5 Model POP State Location

1 701 50 0 no plume –
2 3089 126 0 no plume –
3 654 152 1 strong plume Yes
4 579 183 1 strong plume Yes
5 10 1 0 no plume –
6 214 45 .92 weak plume No
7 64 14 0 weak plume No
8 45 11 0 no plume –
9 103 27 0 no plume –

10 27 11 0 weak plume No
11 6293 87 0 no plume –
12 2221 66 0 no plume –
13 20 5 0 no plume –



5.0 Conclusions

Simulations show that the random field model can produce dramatically improved results when
the data meets the distributional assumptions of the data. However, the presence of a varying
background in real data causes problems for the random field model as originally formulated.

An improved version of the random field model produces a detection statistic (POP) that gives
reasonable results without the use of an empirical calibration, an indication that the improved
distributional model fits the data reasonably well. This is in contrast to the use of SNR, which
produces unrealistically high false call rates.

It is surprising that random field model was able to produce reasonable results using a plume
library of only 9 shapes. A comparison of the plumes in the library (Figure (4.4) and those in the
data Appendix B) show that real plumes are much more complicated than the idealized Gaussian
Plumes in the library. Also, the behavior of the plume with time is more complicated than that
assumed by the model; The real plumes are intermittent and consist of puffs that travel across
the image. Use of a more extensive plume library might significantly increase probability of
detection for weak plumes.

The test presented in this report shows that the random field model has promise; A more exten-
sive test is required to show that it would work correctly on a broad spectrum of sites/gases. A
more extensive test would concentrate on performance on weak plumes, and assure the “true
state” is known by artificially injecting plumes in the data set. In a more serious test, a larger
plume library should be used and the plume library should be empirically determined.
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Appendix A – Calculation of Null and Alternative Distributions for
Benchmark Scenarios

The following conditions have been selected to define the null and alternative distributions to
determine detection performance of the random field model;

• Dimensions: There are np ¹ 642 pixels in an image. The plume is of length n º ¹ 2 » 5 » 10.
The site has been imaged nt ¹ 1 » 2 » 3 times. A space-time pixel in the data is indexed by
jk, representing pixel j in time-slice k.

• The LWIR data from pixel jk has been summarized into a normalized signal, Y jk, (for
example, by application of a matched filter). When no plume is present, Y jk is normally
distributed with mean 0 and standard deviation 1. (Y jk ¼ N ½ 0 » 1 ¾ )

• There is at most one plume at the site, located for convenience in the middle of the site.
The plume is a single line of pixels of fixed length n º . In all time-slices of the site, the
plume direction is the same.

• When a plume is present at jk, Y jk ¼ N ½ γ » 1 ¾ , where γ is the signal-to-noise ratio associated
with the gases in the plume. The signal/noise ratio in an actual plume would vary, but
for simplicity, we will assume it is fixed at gamma. Since we are mainly interested in the
detection of weak plume, γ will be small, with γ ¹ 1 » 2 » 5.

A.1 Detection Statistics to be Evaluated

The most obvious way to determine whether or not there is any evidence of a gas release from the
images (without considering spatial/temporal information) is to look for the largest signals in Y jk.
If these signals are appropriately large, then one concludes the gas is present at the site and the
plume location conforms to those jk where Y jk is above a specified threshold.

This method of detection is equivalent to using the maximum detection statistic;

Tmax ¹ max
jk

Yjk (A.1)

where the index runs over the ntot ¹ npnt pixels in the data. We choose a threshold t, and call a
detection at the site whenever Tmax ¿ t. We call this detection methodology the Max detection
methodology.

Another popular variant of the detection strategy described above is to first smooth the signals
Yjk using a spatial filter that resembles the plume. If one did not know the shape of the plume,
one would smooth using several different shapes and look for a “hit” in the resulting smoothed
images. In other words, for this detection strategy, one smooths using a plume shape S , and then
takes the maximum, so the detection statistic is;

Tsmooth ¹ max
jk

S À Y (A.2)
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Since a portion of the Bayesian algorithm involves smoothing, it is of interest to compare Tsmooth
against Tbayes; It is possible that the good performance of Tbayes relative to Tmax may be due to
smoothing and if this were to be the case Tsmooth would be a viable alternative to Tbayes. We call
this detection methodology the smoothed detection methodology.

A.1.1 Null and Alternative Distributions

The null and alternative distributions can be explicitly calculated for Tmax, since the data Y jk is
independent;

Pr Á Tmax Â t ÃNull Ä
Å Φntot Á t Ä (A.3)

and

Pr Á Tmax Â t ÃAlternative Ä8Å Φntot Æ p Á t Ä­Ç Φp Á t È γ Ä (A.4)

where p represents the number of pixels in the plume; p Å n É nt . Using these distributions, we
can calculate an ROC curve for Tmax.

However, such formulas can’t be produced for a smoothed version of Y , because the smoothed
data points are no longer independent. To calculate the distribution of Tsmooth we use simulation.

A.2 Bayesian Detection Statistic

The random field model developed in Section (2) does not ”detect” plumes in the image, rather it
provides a probability that plumes exist (i.e. site POP). However this probability can be easily
used for detection by thresholding. In other words, we would say a plume exists at the site if
Pr Á plume exists Ã L Ä is larger than a specified threshold. An equivalent procedure is to threshold
on the odds-ratio associated with this event. Since this happens to produce a simpler detection
statistic, we define our Bayes detection statistic as follows;

Tbayes Å Pr Á Plume Ä
Pr Á No Plume ÄÅ ∑
j

R Á j ÃL Ä (A.5)

with

R Á j ÃL Ä
Å R Á j ÃY Ä�Å 1
λnt Æ 1 ∏

k
R Á j ÃY Ê k Ä (A.6)

and

R Á j ÃY Ê k Ä
Å ∑
i

R Á S ji ÃY Ê k Ä (A.7)

and

log Á R Á S ji ÃY Ê k Ä<Ä�Å log Á hiλ ÄFË ∑
j2

S ji Á x j2 Ä log Á B jk Ä (A.8)
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For these equations to completely define Tbayes, we need to specify (1) the Bayes factor in terms
of the data Y jk, (2) the plume shapes S ji, and hi, and finally λ.

A.2.1 Bayes Factor

The Bayes factor for pixel jk, B jk, is simply the alternative distribution, divided by the null
distribution. Hence log Ì B jk Í is;

log Ì B jk ÍEÎ log Ï 1Ð
2π

exp Ì Ñ 0 Ò 5 Ì Y jk Ñ γ Í 2 Í
1Ð
2π

exp Ì Ñ 0 Ò 5Y 2
jk Í Ó

log Ì B jk ÍEÎ γ Ì Yjk Ñ 0 Ò 5γ Í (A.9)
(A.10)

A.2.2 Plume Shapes

We will assume that the plume library consists of nd straight-line plumes of length n Ô , uniformly
spaced between 0 and 90 degrees. As an example, Figure (A.1) illustrates the plume shapes for
n Ô Î 10 and nd Î 5

For this problem, SOi represents a bit-map in direction i. Under the alternative hypothesis,
a plume does exist in the data, and it conforms to the ”middle” shape (i.e. 45o shape) in the
library. All directions will be assumed to be equally likely, hence hi Î 1 Õ nd . For this model, we
will use nd Î 3.

Figure A.1. Example of a Plume Library
S.j1

S.j2

S.j3

S.j4

S.j5
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A.2.3 Plume Rate of Occurrence

The plume rate of occurrence, λ occurs as a multiplicative factor in the formulas defining Tbayes
and therefore does not influence the FCP/POD performance of this statistic. To simplify the
formulas, we will set λ Ö 1.

A.2.4 Strategy for Calculation of Distributions

The null and alternative distributions are too difficult for analytic calculation, therefore, we
produce them by simulation. To produce the alternative distribution of Tbayes;

1. Simulate Y jk from a N × 0 Ø 1 Ù distribution

2. Calculate Tbayes from the simulated data

3. Repeat the two previous steps about a 1000 times and form the distribution Pr × Tbayes Ú
t ÛNull Ù from the population of Tbayes.

The alternative is produced in the same general fashion, except at the pixel locations in the
plume, the Y jk are chosen from a N × γ Ø 1 Ù distribution.
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Appendix B – Plots of Single-Pixel Regression Fits to LWIR Data

The images in this appendix plot Ĉ Ü sd Ý Ĉ Þ where Ĉ represents a gas concentration estimate
obtained by single-pixel regression of the LWIR data. For a single pixel, the LWIR data is an
LWIR spectrum and the regression model attempts to describe radiation from the ground and the
effect of atmosphere and plume on this radiation.

The plots are on SNR of gas concentration, and if the standard deviations in the denominators
are correct, a value greater than about 4.5 in an image would be unusual when no plumes were
present (i.e. would only occur about 1% of the time). For each gas, we have presented the SNR
for 4 of the 10 time slices.
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Appendix C – POP Plots from the Improved Random Field Model

This appendix displays two plots for each random field model fit to the data (there is one fit for
each gas). The first plot presents the log of the plume odds-ratio. This odds-ratio describes
the probability that a plume exists at a particular location in the site. Low values indicate low
probabilities, while high values indicate high probabilities of a plume (POP). These odds ratios
are added up and normalized to produce the POP for the entire site, which is output in the figure
heading.

The second plot presents the SNR (Ĉ ß sd à Ĉ á ) from the regression data (i.e. the input data to the
random field model). The actual regression data consists of a SNR image for each of the 10
time-slices, which are too many images to present. The plot presented represents the maximum
SNR over the 10 time-slices. Any locations having a POP â�ã 001 are identified in both plots
with a “+”.
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Appendix D – Monte Carlo Check of the Random Field Model

In order to verify that the Random Field Model was free of any programming bug, we con-
structed a simple Monte-Carlo simulation to see if it computed reasonable posterior probabilities
(i.e. POP’s). We found that it did seem to be calculating the correct probabilities, and further-
more was extremely effective at detecting weak plumes.

The Monte-Carlo consists of 5 test cubes containing gas concentrations contaminated with Gaus-
sian error (mean 0, standard deviation 1) and each test cube consists of 3 time slices which
contain a Gaussian plume in the lower-left hand corner as illustrated in Figure D.1. The plumes
originate from the plume library used by the random field model, so the simulated and assumed
plumes will match exactly. However, the random field model must select the correct plume
shape out of nine possible.

The 5 test cubes contain plumes with increasing stack emissions of 0, 0, 0.5, 1, and finally 2.
This implies that the first two test cubes contain no plumes and should produce a low POP,
corresponding to a false call probability. In fact, it can be shown that the expected value of a
POP associated with a “blank” test cube should be equal to the prior POP used in the Random
Field Model. In this case, we have set the prior POP to 0.01, so we would expect a posterior
POP of about 0.01 for the first two test cubes.

Figure D.1. Gaussian Plume used in the Simulation
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Because the plume shapes in Figure D.1 all have a maximum of 1 at the origin (which is also
the location of the stack), using emissions of 0.5, 1, and 2 results in maximum SNR’s of 0.5, 1,
and 2 respectively for the test cubes that contain plumes. These are weak plumes, and one can
visually see this by examining simulated versions of the data cubes presented in Figure D.2. The
images in the Figure display the test cube with the strongest plume (that with a stack emission
of 2); It would be difficult to visually detect the plume in these images. Only if an investigator
performed the right transformation would he find the plume. For example an average of the
three images, as illustrated by the 4’th image, makes the plume apparent.

A fit of the random field model to the test cubes produces the results present in Figure D.3. The
images display the log of the plume odds-ratio, and the POP for the site is given in the image
headings. As one can see, the POP associated with blank test cubes is low; In fact lower than
the expected value of 0.01. Also, the random field model produces strong detection for the two

Figure D.2. 5 Simulated Data Cubes
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strongest plumes producing a POP of 1. From the odds-ratio plots, we also see that the plumes
are correctly located.

The weakest plume (emission=0.5) does not show a strong detection; Its POP is comparable
to the value one would expect from a blank image. However, it does seem to have located the
plume correctly.

Figure D.3. POP’s for the 5 Simulated Data Cubes
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