
 

 

PNNL- 17519 

 

 

 

 

 

 

 

MIST Final Report:  
Multi-sensor Imaging Science  

and Technology 
 

 

 

Michael A. Lind 

Patricia A. Medvick 

Michael G. Foley 

Harlan P. Foote 

Patrick G. Heasler 

Sandy E. Thompson 

Lisa L. Nuffer 

Patrick S. Mackey 

Jonathan L. Barr 

Andrea S. Renholds 

 

 

 

 

March 2008 

 

 

 

 

 

Prepared for the U.S. Department of Energy 

Under Contract DE-AC05-76RL01830 

 

 

 

Pacific Northwest National Laboratory 

Richland, WA 98031  

 

 



 

 i 

 
DISCLAIMER 

 

This report was prepared as an account of work sponsored by an agency of the United States Government. 

Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of 

their employees, makes any warranty, express or implied, or assumes any legal liability or 

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, 

or process disclosed, or represents that its use would not infringe privately owned rights. Reference 

herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 

otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 

United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of 

authors expressed herein do not necessarily state or reflect those of the United States Government or any 

agency thereof. 

 

 

PACIFIC NORTHWEST NATIONAL LABORATORY 

operated by 

BATTELLE 

for the 

UNITED STATES DEPARTMENT OF ENERGY 

under Contract DE-AC05-76RL01830 

 

 
Printed in the United States of America 

 

Available to DOE and DOE contractors from the 

Office of Scientific and Technical Information, 

P.O. Box 62, Oak Ridge, TN  37831-0062; 

ph:  (865) 576-8401 

fax:  (865) 576-5728 

email:  reports@adonis.osti.gov 

 

Available to the public from the National Technical Information Service, 

U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA  22161 

ph:  (800) 553-6847 

fax:  (703) 605-6900 

email:  orders@ntis.fedworld.gov 

online ordering:  http://www.ntis.gov/ordering.htm 



 

 ii 

 

Abstract 

 
The Multi-sensor Imaging Science and Technology (MIST) program was undertaken to 

advance exploitation tools for Long Wavelength Infra Red (LWIR) hyper-spectral 

imaging (HSI) analysis as applied to the discovery and quantification of nuclear 

proliferation signatures. The program focused on mitigating LWIR image background 

clutter to ease the analyst burden and enable a) faster more accurate analysis of large 

volumes of high clutter data, b) greater detection sensitivity of nuclear proliferation 

signatures (primarily released gasses) , and c) quantify confidence estimates of the 

signature materials detected. To this end the program investigated fundamental limits and 

logical modifications of the more traditional statistical discovery and analysis tools 

applied to hyperspectral imaging and other disciplines, developed and tested new 

software incorporating advanced mathematical tools and physics based analysis, and 

demonstrated the strength and weaknesses of the new codes on relevant hyperspectral 

data sets from various campaigns.  This final report describes the content of the program 

and the outlines the significant results. 
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1 Introduction 

1.1 Goals 

 

The goal of the MIST (Multi-sensor Imaging Science and Technology) program was the 

advancement exploitation tools for Long Wavelength Infra Red (LWIR) hyper-spectral 

imaging (HSI) applied to the discovery and analysis of nuclear proliferation signatures. 

The program was focused on mitigating LWIR image background clutter to ease analyst 

burden and enable: 

 

 faster more accurate analysis of large volumes of high clutter data 

 greater detection sensitivity of nuclear proliferation signatures (primarily released 

gasses) in LWIR hyperspectral images via clutter reduction 

 quantified confidence estimates of the signature materials detected. 

 

This program targeted:  

 

 investigation of fundamental limits and logical modifications of the more 

traditional statistical discovery and analysis tools applied to hyperspectral 

imaging and other disciplines 

 development and testing of new software incorporating advanced mathematical 

tools and physics based analysis  

 development of an integrated tool set that optimizes and improves hyper-spectral 

analysis beyond the capabilities included the HIP (LANL), GTK (Sandia), HEAT 

(NGA) and ENVI (ITT - commercial) codes, and 

 demonstrating the new code on relevant hyperspectral data sets from various 

campaigns 

 

This report concentrates on the latter stages of the program to showcase the analysis 

techniques and the resulting improvements.  To avoid classification the details of the 

releases targeted and the specific sensor systems used have not been included. 

 

To put the program in perspective it is helpful to consider the elements that go into the 

extraction and meaningful quantification of data from an LWIR hyperspectral data cube. 

The intent of the report is not to discuss the technology or difficulties behind the actual 

data collection and what can be done to improve that process, but rather what needs to 

transpire after the data is collected to maximize information extraction.  Figure 1 

illustrates the abbreviated processes that could and should be considered in the processing 

and analysis of a data cube for maximum benefit. 
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Figure 1.  Ideal processing of a hyperspectral data cube. 

 

 

The left hand block in the figure represents some of the data that must be available at the 

time of processing in addition to the data cube to fully exploit the LWIR data cube.  For 

example, it is helpful to have the sensor attitude and altitude for assigning geospatial 

coordinates and viewing path information to each pixel. This can be especially important 

for geo-registration of features in line scan sensors where atmospheric buffeting causes 

pixel overlap and voids when compared to a simultaneously captured focal plane image. 

It is also critical for multi image utilization for noise reduction and realization of the 

advantages provided by staring modalities. In addition the sensor must be fully calibrated 

for absolute radiance as well as drift characteristics and compensated for collection optics 

corrections. Atmospheric path information is critical to high accuracy characterization as 

is the data on the materials being sought. In addition information about the background 

and the plume characteristics is required to make good quantitative estimates of effluent 

volumes.  In actual practice, even on well designed experiments, little of this data 

(ground truth) is actually available to the analyst, making his job all the more difficult. 

Fortunately there are methods available for making some of the needed corrections to the 

data cube, but these established processes will not be discussed in detail here. 
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The second column represents some of the analysis techniques that have been 

investigated to various degrees in this project.  These are  

 

 PCA - Principal Components Analysis 

 WMF – Whitened Matched Filters 

 SMF - Spectral Match Filter / K-Means Clusters 

 ICA - Independent Components Analysis 

 FFT – Fast Fourier Transforms or 3D-FFT in three dimensions 

 SPA - Super Pixel Analysis 

 BLB – Blob Analysis to find regions of interest 

 BRA – Bayesian Regression Analysis 

 ISM – Iso–Mapping / manifold geometry analysis 

 HDA – Hyper Diagraph Analysis for multidimensional constructs 

 EEA – Entropy Evolution Analysis – using Shannon entropy 

 PPA - Projection Pursuit Analysis 

 TED - Temperature – Emissivity Deconvolution 

 Etc. – the list goes on 

 

The results of our investigations showed that no single technique yields superior results 

in all cases for both sensitivity and specificity over various types of background clutter. 

In fact combinations of techniques and modifications of the more traditional processes 

often yield superior results with less or minimally added computational overhead if 

properly applied. The results of these investigations are illustrated in this final report. The 

results presented in this report were obtained using manual batch processing of a variety 

of data cubes and analysis techniques as they was insufficient resource available to build 

a fully automated analysis program to yield the best results on its own, a goal still worthy 

of pursuit in the future. 

 

The third column of the figure points the way toward an automated process of 

optimization which was planned for the following year of the project but was unrealized 

in the early termination of the project except via a manually entered batch file process 

during the final year.  By comparing the outputs of a few of the processes in the second 

column, ranking the results and iterating using the techniques on modified portions of the 

cube described later in this report, it is possible to obtain the better low level detection of 

effluents with better concentration estimates and higher confidence estimates.  The 

challenge remaining is to do this in near real time, (shown to be feasible in this program 

with parallel processing) autonomous environment. 

 

1.2 Approach 

 

Since we did not have access to the instrumentation, the acquisition parameters or the 

calibration data in this project, we must make the assumption that we are starting with 

data cubes that are properly corrected to yield geo-spatially registered, spectrally 

corrected and calibrated radiance data.  While found not to be strictly true for most real 
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data cubes examined, sufficient additional information can still be extracted to show the 

added value of the general approach. 

 

The MIST approach uses three layers of computational analysis to provide optimized 

results as shown in Figure 2.  The first layer is the cube analysis layer.  The detection 

problem is approached from three different perspectives: blind source separation (looking 

for anomalous regions of interest in unknown backgrounds), known source separation 

(predefined materials in unknown backgrounds), and site knowledge source separation 

(substantial knowledge of the source site to mitigate what would normally be regarded as 

image clutter via site specific models or multiple registered images).  The algorithms for 

each approach were evolved after considering the alternative computational approaches 

in the second column of Figure 1. Each approach can be used to iterate an optimal 

solution using the available analysis tools. 

 

 

 
 

Figure 2.  MIST program showing an implementation of the three different approaches with 

iteration for improving data analysis. 

 

Once the data cube is assembled, one of the three analysis approaches is initially selected 

based on the type of ancillary information available. The details inside the boxes and the 

strengths and weaknesses for each computation method used in the three approaches will 
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be discussed later in the report.  The reader is referred to the papers listed at the end of 

this report for additional discussion of the methods.   

1.2.1 Blind source separation 

 

The cube analysis process yields image outputs in which objects of interest (plumes in 

our case) are enhanced (normally unseen in spectral sampling alone).  The process is 

illustrated graphically in Figure 3 for the blind source separation pathway.  

 
Figure 3.  An illustration of the analysis process starting with the calibrated data cube and 

ending with a concentration profile and confidence estimate. 
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The process starts by importing a calibrated hyperspectral data cube.  The cube illustrated 

in the figure depicts a gas release near the edge of a group of structures in a desert 

environment.  A broadband image of the cube is shown at the top of the figure.  No 

plume is readily apparent in any of the spectral bands. 

 

The second step in the analysis process is to whiten the data cube.  Whitening 

decorrelates and normalizes the data.  It has the effect of reducing the noise by reducing 

the common feature similarities and thereby increasing the less dominate features.  In the 

illustrated case the plume is one of those features.  The procedure requires applying a 

covariance matrix calculated from either the entire image or from selected sections of the 

image. In the example above simple whitening over the entire cube reveals the first traces 

of this strong plume in several wavelength frames as shown in the second row of 

photographs. 

 

The principle components analysis (PCA) using the parts of the covariance matrix that do 

not contain the plume further enhanced the plume contrast in some of those components.  

This is shown in the third row of images. It should be noted that PCA over the entire 

image is a common processing technique used in several analysis programs. 

 

The forth row of images shows further signal to noise enhancement is possible by 

applying independent components analysis (ICA) to those PCA components that showed 

the plume. Ideally only one ICA component will yield the plume. Note this ICA 

component yields the highest signal to noise ratio in this data cube. Since ICA is 

computationally intensive it can be greatly facilitated by selection of the appropriate PCA 

components first for inclusion in the ICA computation.   PCA is much less 

computationally intensive; hence faster overall computation is possible as the preceding 

step. 

 

Once the highest definition feature is extracted, a mask of the plume is created.  The 

mask can be simple threshold based with manual exclusion of pixels obviously not in the 

plume or it can automatic probability based on plume like characteristics.  The blob 

detection algorithm was established to do the latter, but is still in its exploratory phases at 

this writing. These regions of interest (ROI) result in a ROI mask. With this mask the 

data can again be iterated through the analysis layer improving the mask and the refining 

the signature probabilities.  Once the final mask is established, the concentration profiles 

can be determined and confidence estimates prepared. 

 

The in the absence of another predictive mechanism, mask provides a “truth” area for a 

concentration estimate on gas absorption levels under the mask and a confidence estimate 

based on residuals inside and outside of the mask area. There are many ways of looking 

at the confidence estimate that were investigated. No one method proved to be 

universally acceptable. The ROC curve shown in the illustration is one method that is 

useful in many circumstances. The ROC curve generation program also provides a 

contrast to noise ratio often used as the signal to noise ratio for flat images and data cube 

projections. Other measures of signal to noise are also helpful in other situations.  
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It should be noted in the illustration above that depending on the gas and the 

concentration it may not be necessary to go though all the steps cited.  Simple whitening 

to ICA may be sufficient to yield a reasonable ROI in scenes with high concentration or 

high absorption coefficient gasses. 

 

1.2.2 Known source separation 

 

When the source is known (target gas is known), then it is more expeditions to first 

employ the method shown in middle box of Figure 1.  Here a materials library (gas 

library or a single gas spectral absorbance file in our case) is used to construct a whitened 

matched filter (WMF) which is convolved with either the data cube or a previously 

whitened data cube to yield the results.  

 

Alternatively a Fast Fourier Transform (FFT) can be used to perform the operation using 

either a raw data cube or a whitened data cube for the operation. The advantage a 3-D 

FFT is that both spatial and spectral correlations can be performed simultaneously so that 

spatial and spectral filters can be used. 

 

Both methods yield reasonable results with relatively short computational times. The 

methods are described in greater detail later in the report and are further explained in the 

reports cited at the end of the report. 

 

1.2.3 Site knowledge and multiple view separation 

 

When the site can be characterized in detail, then using physics based modeling it is often 

possible to extract even greater information from backgrounds that would otherwise be 

considered clutter. The approach can involve applying a variety of tools and usually some 

form of regression (Bayesian in our case) to find targeted features. Unfortunately this 

approach is often time consuming for targets of interest since additional information 

about the target area must be incorporated. 

 

Examples of this type of analysis are the following: 

 

a) Multiple site view that allows image averaging thereby increasing the signal to noise 

(S/N) ratio by the square root of the number of registered images. 

 

b) Physical site modeling taking into account real materials characteristics, atmospheric 

conditions, illumination conditions, viewing angles, gas propagation models, etc..   

 In the LWIR both temperature and emissivity play a large role and when they 

can be deconvolved, better estimates of the region of interest and the gas 

concentrations can be derived.  

 When likely plume sources can be located and estimated of plume dispersions 

made, then better starting estimates for Bayesian regression can be made. 
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 When the background can be modeled in sufficient detail, better estimates for 

reducing background clutter can be made. 

 

All these process require registration in the sub-pixel resolution range to be most 

effective. A summary review and status of what has been accomplished in the MIST 

program for all the above methods follows in this report. 

 

 

2 Basic Statistical Methods Investigated 

2.1 Principal Components Analysis 

 

Principal Components Analysis (PCA) is a well established technique for finding objects 

buried in image clutter and is a common component of many commercial software 

packages.  It our case it is used as a baseline comparison technique. 

 

The advantage of PCA is that is a relatively rapid calculation that allows visualization of 

high dimensionality data cubes in a lower dimensional representation.  Technically it is 

an orthogonal linear transformation that rotates the data into a new coordinate system 

such that the largest variance lies on the first coordinate (principal component).  The next 

largest variance lies on the second coordinate and so forth up to the maximum spectral 

dimension of the data cube.  

 

The calculation is done by organizing the data cube into column vectors representing the 

N spectral values (column) at each M pixel (row) in the scene.  This matrix X is an array 

of dimension MxN.  The empirical mean vector of the data is then calculated (dimension 

Mx1) 

 

   



M

m

nmX
M

m
1

,
1

  

 

and subtracted from the original matrix to form a scatter matrix A, 

 

A = X -  h 

 

where h is a unit 1xN row vector. 

 

Then the NxN covariance matrix is calculated by taking the outer product of the scatter 

matrix with itself for these real-value data. 

 

K = 
M

1
AA

T
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The eigenvectors V, which diagonalize the covariance matrix, are then calculated using 

one of several standard algorithms. The corresponding eigenvectors are reordered by 

decreasing eigenvalue into a transformation matrix W, comprised of a selected subset of 

the eigenvectors with the highest eigenvalues. The resultant projection of any component 

is then viewed as 

 

B = W
T
A.  

 

Depending on the strength of the plume and the uniformity of the background clutter, the 

technique can reduce the dimensionality of the original cube substantially with the plume 

becoming visible on several of the higher eigenvalue projections.  The lowest eigenvalue 

projections contain the bulk of the clutter. 

 

2.2 Whitened Matched Filter 

 

When looking for plumes with known constituents Whitened Matched Filters are a 

commonly used technique. The MIST program also examined this technique with a few 

new twists that proved useful for S/N enhancements. 

 

Many data cubes are highly structured and contain significant statistical redundancy.  

Whitening linearly transforms the signal mixtures (vectors) A into another set of mixtures 

(vectors) A , each with unit variance, that are uncorrelated with each other.   In the 

spectral domain the whitening matrix V is derived from the covariance matrix K using 

standard eigenvalue decomposition. By definition  

 

 T
K EDE  

 

where E is the orthogonal eigenvector matrix and D is the diagonal matrix of its 

eigenvalues, then 

 
 1 1 T

K ED E  
and  

/ /  1 2 T 1 2
V ED E K . 

 

Applying whitening transforms the matrix A into a new matrix that is both orthogonal 

and effectively reduced in the number of parameters from n
2
 to n(n-1)/2.  The whitened 

matched filter (WMF) operation is equivalent to correlating the whitened signature vector 

b with a whitened data cube A.  The resulting whitened matched filter equals the 

whitened signature times the whitened data cube.   

 
/ /( ) ( )( )  1 T T 1 2 1 2K b A b K K A    
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In addition, the MIST program showed that the effectiveness of whitening in reducing or 

eliminating clutter can be increased by careful selection of areas of the image for the 

whitening calculation that do not contain the target of interest.
1
 

 

2.3 Independent Components Analysis 

 

Independent Component Analysis (ICA) has been shown to be a useful tool for blind 

source separation of mixed signals in many applications.  In the MIST program it was 

applied to the high clutter LWIR data cube problem. 

 

The method finds components that are both maximally statistically independent and 

maximally non-Gaussian.  Thus, the components share minimum mutual information or 

maximum joint entropy.  In an ideal situation, the de-mixing would be complete and the 

plume would emerge in a single component with the clutter removed.  However, this is 

rarely the case in real data.  

 

There are many approaches to ICA.  The techniques used in the MIST program uses the 

fast ICA 
2
 algorithm. It approximates a solution to the problem 

 

x = As 

 

where x is a vector of mixed components, A is a square mixing matrix, and s is a vector 

of independent components.  The problem is to find s and A when neither is known. This 

is done by assuming the components of s have non-Gaussian statistics and thus sums of 

those components will be more Gaussian than the individual components.  

 

The algorithm looks for an array of independent components S that are as non-Gaussian 

as possible by constructing an un-mixing matrix W of orthogonal basis vectors pointing 

in the directions of maximum non-Gaussianity and multiplying by an array of whitened 

mixture vectors Z. 

 

WZ = S 

 

Whitening Z removes the second order correlations from the mixtures contained in the 

covariance matrix enabling use of only the higher order information and orthogonalizes 

the data. As discussed in the whitening analysis section above 

 

Z = K
-1/2

X 

 

                                                 
1
 Lind MA and J Barr. Modeling and Software Scene Simulation for Long Wavelength Infra-Red Hyper-

Spectral Imaging Ground Clutter. PNNL-SA-55971, Pacific Northwest National Laboratory, Richland, 

Washington.   

 
2
 Hyvarinen A. 1999. “Fast and Robust Fixed-Point Algorithms for Independent Component Analysis”, 

IEEE Trans. On Neural Networks, 10(3):626-634 
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where K is the covariance matrix of the input mixtures A. 

 

That actual algorithm (a simplified Newton method) proceeds as follows: 

 

1. Center the data for zero mean 

2. Whiten the data to give Z 

3. Select the number of  independent components that are to be estimated m<n and set 

the loop counter to i=1 

4. Randomly select an initial value for Wi normalized to unity 

5. Let Wi = E{Zg(Wi
T
Z)} – E{g’(Wi

T
Z)}Wi , where E is the expectation value and g is 

a nonlinear function of negentropy (other non linear functions can be used for g 

such as Kertosis) 

6. Orthogonalize Wi = Wi - 




1

1

i

j

(Wi
T
Wj)Wj 

7. Normalize Wi/||Wi|| 

8. If Wi has not converged, go back to step 5 

9. Increment the loop counter and go to step 3 

10. Calculate the IC components S = WZ.  

 

Note that the initial vector is chosen at random, so the order of the components can vary 

from calculation to calculation. Additionally convergence speed depends on the non-

linear function g that is chosen. Kurtosis, entropy and other high order functions can be 

used.  A more detailed explanation of the underlying concepts for the algorithm can be 

found in the Hyvarinen reference.
3
 

 

The downside of ICA is that it is computationally intensive often taking many hours to 

calculate the components of a large hyper-spectral data cube. On the upside, the 

computational time can be decrease substantially using parallel processing. This was 

demonstrated under the MIST program.  

 

Three techniques were explored under the MIST program to decrease computation time 

while taking maximum advantage of the benefits derived from non-Gaussian clutter 

reduction and the reduced number of resultant component views containing plume 

information.  One technique used parallel processing with up to 32 processors to cut 

processing time substantially, another used random sampling of the data cube to reduce 

the physical size of the data cube and thus decrease the calculation time, and the third 

employed PCA prior to ICA taking only those PCA components that showed evidence of 

the plume to reduce the size of the computational matrix and provide a single component 

for viewing.   

 

 

                                                 
3
 Hyvarinen A, J Karhunen, and E Oja. 2001. Independent Component Analysis. John Wiley & Sons, Inc. 

New York. 
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2.3.1 Enhancements using parallel processing 

 

Since ICA is can be coded for parallel processing, a series of test were performed to 

explore the computational time enhancements that were possible.  In this preliminary 

investigation we used up to 32 processors operating in several configurations on large 

representative data cubes to calculate the ICA components.  The results follow the trends 

shown in Figure 4.  Clearly there is a computation time advantage with decreasing 

efficiency as the number of processors increases.  For our algorithms the most efficient 

tradeoffs between compute time and power started saturating at about 16 processors 

where the improvement was about a factor of 8. The exact benefit depends somewhat on 

the size of the cube and the configuration of the processors. Adding another 16 

processors can decrease computation time by another 25%, where the process is reaching 

highly diminished returns.  

 

 

Figure 4. Compute time vs. number of processor CPU for a 600MB data cube. 
 

2.3.2 Enhancements using random sampling  

 

The time consuming part of the Fast ICA algorithm involves an expected value 

calculation over all the pixel vectors in the cube. Since a typical cube contains on the 

order of one to 10 million elements, a good approximation to the expected value can be 

made with 10-20% of the pixels, giving a corresponding reduction in computation time. 

The process is illustrated in Figure 5. Here the original data cube is sub-sampled to 25%, 

10% , 5% and 1% of the total cube via random sampling.  The plume appears in different 

components since the components are essentially randomly distributed unlike PCA where 

they can be eigenvalue ordered. Some plume appear white and some dark, but they are all 

visible although some what decreased in image contrast based signal to noise as the sub-

sample density is reduced. 
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Figure 5.  Sub-sampling from 25% down to 1% of the original cube still yields valuable results 

with a large savings in computation burden. 

 

The general trend of the image contrast signal to noise and the threshold based ROC 

curves for the four images is showing in Figure 6. Cleary as the sampling frequency 

reduces, the S/N decreases as does the probability of detection/probability of false alarm 

ratio. For a complete explanation of these performance parameters the reader is referred 

to a related paper. 
4
  

Figure 6. ROC curve and S/N values for the ICAs generated from 25% , 10%, 5% and 1% 

randomly sub-sampled data cubes 

                                                 
4
 Michael A. Lind, Software for Generating ROC Curves for Hyperspectral Data Cubes and Flat Images, 

PNNL-17243, December 2007, Pacific Northwest National Laboratory, Richland, WA 

 

25% 
IC 58 
1158 sec. 

10% 
IC 45 
529 sec. 

5% 
IC 23 
461 sec. 

1% 
IC 50 
148 sec. 
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2.3.3 Enhancements by combining with PCA 

 

The bands of the HSI cubes are generally highly correlated resulting in a large data 

compression in the PCA components. The eigenvalue spectrum can be used to 

select an appropriate cut-off and reduce the number of components by more than 

50% and often more than 75%. This reduced set of PCA components can be fed to the 

ICA step with sub-sampling to give a substantial improvement in overall compute time 

over ICA of the full data cube.  The PCA components often contain multiple copies of a 

detected plume. Applying a subsequent ICA step can frequently combine these multiple 

plume copies into a single stronger plume component. The following example illustrates 

the process of the combined PCA-ICA processing. 

 

To illustrate the point consider ground based desert image cubes analyzed with a 

combination of PCA and ICA methods. These cubes proved to be particularly good 

candidates for these blind detection methods. The plumes are viewed against a relatively 

uncluttered sky as the background which is less cluttered than most cubes collected from 

a nadir viewing geometry.  Figure 7 shows an image sequence of the first 10 components 

of the PCA. The gas plume from the stack which is not visible in any of the spectral 

components alone is easily visible in several of the principle components.  

 Figure 7. The first ten principle components of a ground based hyperspectral image 

showing the stack plume in components 3,4,5,6,7,9 and 10. 
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Figure 8 shows the results of ICA processing of this group of PCs.  It also shows the 

associated intensity histograms.  Here the plume is isolated as one independent 

component, a substantial improvement over the PCA result.  ICA assumes the input data 

can be modeled as sums of independent components and ICA looks for components 

whose distributions are less Gaussian than the input mixtures.  Component 7 which 

contains the plume is clearly non-Gaussian. Several of the other components are also 

visibly non-Gaussian. For the cubes with stronger plumes the ICA detection compares 

favorably with the Whitened Matched Filter output. 

 

 
 
Figure 8.  Independent components 1 – 10 from principle components 1 – 10 with their 

associated histograms. 

2.4 Fast Fourier Transform 

 

The application of whitened matched filtering to hyperspectral data cubes within the 

Fourier domain is another approach to the detection problem.  The implementation of a 

Three Dimensional Fast Fourier Transform  - Whitened Matched Filter (3DFFT-WMF) 

approach is fast method of achieving ROI identification often enhancing S/N over 

standard WMF techniques by using both spatial and spectral filtering.  However, since 
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the variability in shape of gaseous plumes precludes the full use of spatial conformation 

in the matched filtering, the 3DFFT-WMF results often do not differ from the two other 

WMF methods.  

 

Instead of a single-dimensional matched filter correlated separately along each pixel of 

the hyperspectral data cube (i.e., pixel by pixel), a 3D filter cube is correlated with the 

entire cube.  This technique increases the signal to noise ratio in the filtered image by 

taking advantage of the fact that plume pixels are localized near one another.  The Fourier 

domain provides opportunities for both improved processing efficiency and improved 

filtering  

 

The overview diagram in Figure 9 displays the steps of applying the 3DFFT to a data 

cube.  The inputs are a) the 3D data cube and b) the 3D filter representation of the 

spectrum of interest.  Both inputs are 3DFFTed shifting them into frequency domain.  

Whitening in Fourier space is achieved by creating a smoothing function from the 

Fourier-transformed data cube to apply to the Fourier-transformed spectral filter cube, 

thus creating a Whitened 3D Matched Filter (W3DMF).  Multiplying this W3DMF by the 

Fourier-transformed data cube is equivalent to correlation in the spatial domain.  

Applying the 3D inverse FFT then produces the filtered image data cube in which the 

first layer contains the brightened pixels that correspond to the signature of interest. 

   

 
 

Figure 9.  Overview of steps for using the 3DFFT as a Whitened 3D Matched Filter on a data 

cube, I is the imaginary and Q the real part of the Fourier transform. 

 

Detailed steps in pre-processing/whitening are displayed in Figure 10.  Data inputs are 

the 3D data cube, a chemical spectrum, and the wavelengths of the sensor.  There is an 

option for whitening the data cube to reduce noise.  Since the spectral filter and data 

cube-processed results are multiplied together in step 9, both the filter and the data cube 

may be whitened. In this process the whitening step consists of multiplying by the square 

root of the inverse covariance matrix (ICM) of the data cube.  Pre-FFT whitening may be 
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accomplished either by multiplying both the data cube and filter by the square root of the 

ICM or by multiplying the data cube by the ICM.  

 

 

 

 
Figure 10.  Block diagram of pre-processing steps for implementation of processing steps for 

3DFFT-WMF. 
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With hyperspectral images the spectral signature must be matched to the image format of 

the sensor.  This is achieved by sampling a finely delineated spectrum of the object of 

interest in a manner that matches the sensor apodization.  Using environmental 

information to adjust for differences between sampling in a natural environment and the 

laboratory spectral measurements creates the real-world situation-specific signature.  The 

resulting one-dimensional signature must be expanded by replication into a cube to match 

the spatial size of the hyperspectral data cube.   

 

Both the 3D data cube and filter cube are subjected to a 3DFFT.   Each of the results may 

be whitened by the smoothed power spectrum of the data cube.  The two cubes (whitened 

again or not) are then multiplied together, and the resulting filtered cube subjected to an 

inverse 3DFFT.   The resulting cube tends to contain the signature of interest in one band. 

 

Due to the well-developed techniques to calculate FFT and inverse FFT the 3DFFT-

WMF can have an analytical advantage over the standard WMFs in processing time.  The 

details of the implementation, such as which libraries are used, have the major influence 

on computation time. 

 

Including a spatial low-pass filter within the Fourier space can improve signal to noise 

ratios in a manner similar to super pixel averaging and therefore improve detection limit 

by facilitating the mitigation of high frequency clutter.  The low pass improvement only 

occurs if the filter diameter is smaller than the plume diameter. High pass filtering can 

also be useful in some backgrounds, but less so routinely. An example of the spatial 

averaging using the FFT is shown in Figure 11.  Here we show low pass spatial filters 

with radial dimensions between 1 and 15 pixels. 

 

Figure 11.  The effect of a FFT low pass filter with filter averaging diameters from 1 to 

15 pixels.   
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The signal to noise of the plume region 1 highlighted in red in the figure varies from 

14dB with the radius 1 filter to 24dB with the radius 15 filter. The S/N starts to degrade 

again when the filter radius reached the flume width. The results are plotted in Figure 12. 

 

 

Figure 12.  Signal to noise of the plume in region 1 as a function of filter diameter. 

 

2.5 Entropy Analysis 

 

Entropy analysis is a technique for rapid screening of data cubes that can yield impressive 

rapid plume location in some cases.  The technique is usually used to measure the degree 

of randomness in the image data and hence to determine the degree of compressibility, as 

high entropy images are less well compressed than low entropy images. Although there 

are many ways to approach this characterization, we examined the “zero-order “or 

Shannon Entropy which is defined as 

 

i

M

i

i pppH 2

1

log)( 


  

 

where H is calculated as the sum of the variation between adjacent pixels across the 

entire image in a selected wavelength band and pi is the relative probability that the 

spectral radiance level falls in the i
th

 quantized level of a finite histogram of M levels of 

radiance values in that wavelength band.  

 

By calculating the entropy for selected wavelength bands and performing a simple 

subtraction between the target band and a nearby reference band, the plume image 

appears.  If the plume concentration is high enough, then the reference band can be the 

average of all bands. The technique does not have the sensitivity of the other statistical 
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methods described above, but it does provide a fast method to locate high concentration 

plumes. An example of a strong plume in an urban region is shown in Figure 13.  The 

plume shows dark in the image, 

 

 
Figure 13.  The results of an entropy analysis of an urban scene with a high concentration gas 

release.  

 

A second example of a ground based image of a near ground release plume, again 

relatively high concentration although not visible in any individual spectral component, is 

shown in Figure 14.  

 

 
 
Figure 14.  Ground based entropy image of near ground gas release (dark near ground region) 

courtesy of Harold Trease, PNNL 

2.6 Sub-sampling for Adaptive Whitening 

 

Adaptive whitening stems from the observation that the background clutter does not 

contribute equally to the whitening step.  Thus the use of selected areas of the data cube, 

preferably those most representative of the background clutter and not containing the 

plume, for the whitening should maximize the contrast and the signal to noise of the 

plume. 

 

To illustrate the relationship between clutter content, whitening decorrelation, and plume 

detection sensitivity, the data cubes are divided into grid blocks whose individual 

contributions to plume detection are measured by calculating the signal to noise ratio of 

the known plume using each of the whitening blocks. The whitening blocks are ordered 
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by decreasing plume S/N ratios and then progressively accumulated one block at a time 

while recomputing the plume S/N at each step in the progression. The resulting plot of 

S/N ratio vs. number of whitening blocks shows the benefits of adaptive whitening.  

 

Two clutter environments are examined,  a desert environment dominated by slowly 

varying random clutter, and a highly organized urban area with a mixture of structures, 

streets, vegetation area, and parking lots.  The desert plume in Figure 15 shows the 

relative block S/N performance (best = 1, worst = 64) and the cumulative result of 

combining whitening blocks. Clearly, data blocks containing the plume have a negative 

effect on detection performance. However, note that there is considerable variation in the 

off-plume blocks as well. The result indicates there was a substantial benefit to detection 

performance.   

   (a)      (b)  

       

(c) 

 
Figure 15.  Illustrations of a) the signal to noise test region, b) the whitening sensitivity grid 

array showing the order in which the blocks contribute the most (1) to the least (64) in plume 

S/N, and c) the S/N performance curve derived from the individual and whitening blocks 

accumulated in order of sensitivity. 
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Figure 16 shows similar results for an urban plume. The smaller LWIR cube was 

partitioned a little differently, but the general results are even more dramatic.  The highest 

S/N is obtained using a reference region similar in clutter to that under the plume, while 

the lowest S/N region is contributed by including the plume area itself.  Additional 

information on the technique can be found elsewhere. 
5
 

       (a)         (b) 

 

 

      (c) 

 
Figure 16.  Illustration of a plume in an urban clutter environment, a) the WMF image of the 

plume, b) the partitioning scheme showing the areas that contributed the highest S/N (white) to 

the lowest (black), and c) the S/N from individual and cumulative background whitening. 

                                                 
5
 Patricia A Medvick, Lisa L Nuffer, Harlan P. Foote, Michael A. Lind, Adaptive Whitening for Rapid 

Processing of Hyperspectral Images, PNNL-16658, May 2007, Pacific Northwest National Laboratory, 

Richland, WA 

 



 

 23 

2.7 Blob Analysis for ROI 

 

The intent of the blob analysis work is quickly locate regions of interest (ROI) for further 

and more detailed analysis thus reducing the total analysis time for further spatial and 

spectral evaluation of a small regions of the entire data cube. The approach taken was to 

create software structure to segregate image features into separate components, delineate 

objects in components, and automatically select objects of interest.  This is done by: 

 

• Defining spatial-spectral features of blobs from multiple previously analyzed 

images to create an object finder. This can be a simple amplitude threshold 

detector for the components. 

• Creating feature/signature vectors that describe the objects of interest (plumes in 

our case). The vectors initially can be based on available cube properties such as 

amplitude threshold, pixel proximity, and object continuity of similarity in 

multiple orders. 

• Running the vectors through a self-organizing map (SOM) 

• Partitioning signature objects for additional analysis and visual verification. 

• Gathering information from interesting signature objects 

• Repeating the process as necessary to extract the required information 

 

The process is illustrated on an ICA analysis of a typical gas plume in Figure 17 below. 

The illustration shows: a) the application the object-finder to an ICA output image 

yielding a crude map of the plume and also highlights significant amounts of noise.  The 

separate blobs are colorized by intensity while the disconnected pixels are colored in 

black, b) a scatter plot of signature vectors derived from the blobs delineated by the 

object-finder and c) the blobs whose signature vectors were isolated in the scatter plot 

and are displayed as colorized segments overlain on the original ICA output image. 

 

 
  (a)    (b)    (c) 

 
Figure 17.  The blob analysis process illustrating a) the object finder output, b) the signature 

vector scatter plot, and c) and final blob out put overlaid on the original image. 

 

This process has been investigated for other applications and the initial software was 

adapted for our use. Unfortunately time constraints forced a very limited looks at this 
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automated ROI identification process beyond simple threshold discrimination and 

continuity vector groupings which were used above. 

 

2.8  Error Estimates & Confidence 

 

There are many source so error inherent in hyperspectral images.  They range from the 

instrumentation error (calibration, pixel registration, instrument temporal fluctuations, 

etc) to the electronic noise ( detector noise, shot noise, etc.) to the image noise (thermal 

source, emissivity source, atmospheric variations, etc.) . Estimates are usually instrument 

operation, viewing propagation, and scene image specific. All can effect the final analysis 

confidence in one form or another.  Statistically one can define confidence intervals or 

approximate confidence intervals as applied to single value random variables to indicate 

the probability over joint distributions or use Bayesian interval estimates (credible 

intervals) where the calculation is based on conditional observed variables  includes 

nuisance parameters.  

 

There are numerous metrics in the literature that can be used to compare analysis 

techniques and provide relative estimates of confidence.  The methods include smallest 

distance 
6
 ,  agreement index 

7
, noise amplification index 

8
 , universal quality index 

9
 , 

and distance/background variance 
10

, among others. A more complete discussion of these 

methods can be found elsewhere 
11

. 

 

The two more holistic measures of error that drove the research in this project and 

provided a basis of comparison for the various statistical and physics base modeling were 

signal to noise and Receiver Operating Characteristic (ROC) curves on the actual images 

recognizing that statistically there are many other estimates and confidence tests for 

relative error which have been used. These comparative error estimates provide the first 

step toward confidence estimates. 

 

                                                 
6
  S. Singh and K. Bovis, An Evaluation of Contrast Enhancement Techniques for Mammographic 

Breast Masses, IEEE Transactions on Information Technology in Biomedicine, vol 9, no 1 (2005). 
7
  Y.M. Salman, M.A. Assal, A.M. Badawi, S.M. Alian, and M.El-M. El- Bayome, Validation Techniques 

for Quantitative Brain Tumors Measurements, Proceedings of IEEE Engineering in Medicine and 

Biology 27th Annual Conference, Shanghai, China, Sept. 1-4 (2005). 
8
  K. Rank, M. Lendl, and R. Unbehauen, Estimate of image noise variance, IEE Proc.-Vis. Image Signal 

Process, Vol. 146, No. 2, (1999). 
9
  Z. Wang, A. Bovik, A Universal Image Quality Index, IEEE Signal Processing Letters, vol 9, no 3 

(2002) 
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2.8.1 Signal to Noise  

 

Both from the raw image perspective and the analyzed image perspective there are 

several methods for estimating signal to noise. Two signal to noise (S/N) methods have 

been used in our comparison work. 

 

The standard measure of S/N in an image, actually a variation of the contrast to noise 

ratio. It requires identification of a region of interest (a plume, an area of suspected 

activity etc.  It is represented by 

 

 / /S N S NS N     . 

 

Here NS  is the mean signal plus the noise (background clutter) in the region of interest, 

N  is the mean of the noise outside of the region of interest and N  is the standard 

deviation of the noise outside the region of interest.  In images where the region of 

interest is small in relation to the entire image, the standard deviation of the noise is often 

calculated over the entire image. Taking the absolute value maintains a positive value 

whether the region of interest is dark or light. Note that using this method the signal-to-

noise ratios are relatively small since the images have not been contrast enhanced or 

whitened in any way. 

A second method of calculating single to noise is to apply  
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where the plume is delineated by contiguous pixels that exceed a threshold value of  

t =N  + 2.3 N .  While most commonly used to calculate electronic S/N, it can be useful 

in images as well. Here the values tend to be larger and remain positive assuming the area 

of interest is brighter than the background. 

 

2.8.2 ROC curves 

 

The Receiver Operating Characteristics (ROC) Curve has been widely used in range of 

applications from structure response to the medical efficacy of drugs since its original 

implementation in providing a quantitative measure of radio signal transmission 

characteristics.  The curve is a plot of the probability of detection versus the probability 

of false alarm or the probability of true event being registered versus the probability of an 

event that registers as true, but is not really true. More importantly in the field of 

hyperspectral imaging it can be interpreted as a comparative measure of sensitivity vs. 

(one minus specificity) for a particular measurement and detection strategy.  Typical 

curves are shown in Figure 6 above. 

 

The ROC curve analysis relies critically on the selection of a “truth” region in the image 
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which can be generated in any number of ways depending upon the data characteristics. 

If ground truth data is available it can provide the most reliable method.   If it is not (the 

usual case), then simple amplitude threshold or image intensity threshold criteria can be 

applied using either pre-selected or statistically based methods (e.g. 2  above the 

average background). It can also be done buy manual selection of areas of potential 

interest and iterating on that selection for the best results.  For uniform results the data 

images are normalized by simple minimum to maximum scaling to remove the offset 

bias.  

 

Probability histograms are then generated from the selected data and the generated truth 

mask and plotted against the normalized amplitude. This is done by counting the number 

of true data points and the number of false data points that fall into specific amplitude 

bins and plotting as a function of relative amplitude. From the probability distributions, 

the integrated probability curves are generated by summing all the truth and then the false 

counts below a moving threshold and plotting the integrated probability vs. the relative 

threshold amplitude.  The ROC curves are generated by plotting the integrated truth 

values against the integrated false values. 

 

Interpretation of ROC curves is straightforward in many cases.  In general, the greater the 

area above the 45 degree diagonal, the better the detection method should be.  ROC 

curves that lie on the 45 degree line are neutral, equally useful and useless representing 

50/50 probabilities.  Those curves that fall below the line are generally less than useful.  

Comparative results may be straight forward or difficult to interpret.  

 

Bottom line is that we found no consistent, non subjective way to compare results 

exactly, but the two methods above represent reasonable methods in many cases. 

2.9 Bayesian Approaches 

 

Some effort was expended in the program to determine the extent to which multiple 

registered images could improve plume detection and gas concentration estimates. The 

approach taken was to extend existing Bayesian single pixel regression models to 

incorporate both spatial and temporal information from the multiple images.  Considered 

were stochastic models for the spatial/temporal structure of the background clutter and 

for models the propagating gas plumes recognizing the registered background clutter will 

be relatively static with respect to the spatial variations and the plumes will not.  This 

assumes that the thermal background radiance remains relatively constant while the 

plume has some drift and shape evolution. For longer time period it might be necessary to 

perform a temperature/emissivity separation to account for variation in the background 

radiance which can be quite significant
12

. 

 

Unfortunately the real data cubes that were available for comparison could not be 

registered well enough in the time available to conduct a conclusive quantitative 

                                                 
12

 Patrick G. Heasler, Michael G. Foley, and Sandy E. Thompson,  2007.  Consequences of Mixed Pixels 

on Temperature Emissivity Separation ,  PNNL-16330, Pacific Northwest National Laboratory, Richland, 

WA. 
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investigation, so some simplifying assumptions were made. Presented here is a brief 

summary of the basic methodology and the reader is referred to an earlier report
13

 for a 

detailed explanation.  

 

The general approach using Bayesian Regression is to supply information on the clutter 

parameters in the form of a prior distribution.  It is assumed that neighboring pixels are 

similar to one another and the spatial parameters can be used to predict the clutter 

parameters better that with a single image.  The trick is then to look for spatial/temporal 

variations between neighboring pixels to locate and characterize the plume. The general 

regression model takes the form at the pixel location x at time t 

 

  , ) ( ( , ), ( , )L x t F C x t x t e   

 

where F is the physics based radiation transfer model, C is a vector of plume gas 

concentrations, is a ground clutter vector and e is the random error term. In practice, 

this are a bit more complex and x will be a weighted average of similar nearest neighbor 

pixels depending on the model and the prior distributions available used.  

 

One can build a standard ground radiance model in the form of  

 

 ( )gL F   

 

where Lg is the radiance from the ground and F is the transformation that expresses Lg in 

terms of the independent normal variables in terms of prior    which describes the 

variability  in the ground radiance.  If the background radiance chances as a function of 

time then it is necessary to perform a similar operation on the temperature/emissivity 

deconvolution to refine the prior for  . 

 

From these basics an iterative algorithm similar to a Hidden Markov Modeling Algorithm 

is used to fit the regression using the more complicated priors. The steps are a) to obtain 

initial estimates of C and   from a fit of the regression model using a single prior 

derived form the whole image, then b) estimate parameters at a pixel using the 

conditional prior with neighborhood values obtained in a), then repeat the process until 

the estimated converge. 

 

One can develop a stochastic model for the background clutter by assuming the spatial 

structure for   is Gaussian and stationary over time and further assuming the low 

frequency components are both inconsequential compared to the higher frequency 

components in the pixel neighborhoods and linked to the basic ground radiance model for 

clutter estimation.  This process effectively smoothes the clutter into distinct regions of 
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stochastic similarity which logically segments the image without forcing it to be 

stationary (relatively independent of time) over its entirety.  

 

With minimal ancillary data such as the wind vector one can then construct simple 

triangular neighborhoods for estimation of plume origins assuming a gas mixture and 

calculate a Bayesian model average using the regional neighborhood parameters for the 

prior, BY assuming the wind direction and applying a Markov random field one can 

enhance convergence.  Details and examples can be found can be found in reference 7. 

The effect is to enhance the probability of detection (POD) of weak plumes assuming 

they are emitted from the same point in successive images using the Bayesian prior. 

 

Figure 18 a comparative example of the POD as a function of plume length for a weak 

plume in a 10,000 pixel image where the probability of false detection has been set to 1% 

and the signal to noise ration has been set to 1.  The scenarios are represented no spatial 

information (independent pixel prior) is used similar to the classical statistical analysis 

based on the whole scene, b) spatial information is included and c) spatial and temporal 

information is included.  

 

 
Figure 18.  Relative probability of detection verses plume length for a) standard BMA, b) spatial 

BMA, and c) spatial and temporal BMA.  

3 Physics Based Models Investigated 
 

Another potential method of reducing clutter is to compensate for a major portion of it by 

careful modeling of the scene and subtracting its effects. This procedure could provide a 

first estimate for clutter subtraction or provide prior for the Bayesian Regression models 

discussed above or just provide cleaner images for other statistical processing 

applications.  This disadvantage of this approach is of course the extensive time it takes 
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to construct a detailed enough site model from aerial photographs and ancillary data (e.g. 

high resolution LIDAR, etc) or detailed site drawing. Still it could be useful for 

frequently revisited sites. As a trial application one industrial site for which we were able 

to obtain extensive background data was selected for detailed evaluation of this 

hypothesis.   

 

3.1 Model construction 

 

Figure 19 shows a high resolution aerial photograph of the site selected for demonstration 

of the concept.  This chemical manufacturing site was the subject of hyperspectral 

campaign several years ago.  Figure 20 shows the final physical model that was 

constructed this portion of the site. The model was constructed via a combination of 

established automated commercial sector software and a fair amount of hand stitching of 

the nodes.  Additional tasks included assigning representative materials to the discrete 

features.  Note that the perspectives in the figures not the same, but the roadways are 

easily identified features that can assist the reader in orienting the views. 

 

 
 

Figure 19.  Aerial view of the industrial chemical production site that was modeled. 
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Figure 20.  The site model that was constructed. 

 

The physical model was then imported into MuSES, a commercial software package 

from ThermoAnalytics, Inc, of Calumet, MI.  The software performs an energy balance 

using convection, conduction, and radiation taking into account solar loads, sky and earth 

emission and weather effects. From this data a radiance model is constructed which is 

time and weather dependent. One such model frame is shown in Figure 21. 

 

 
 

Figure 21.  The broadband radiance from the MuSES model of the site. 
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Figure 22.  Composite RGB image of the hyperspectral data from a portion of the site showing a 

plume in red. 

 

With the model in hand it should have been a straight forward exercise to map the actual 

hyperspectral data onto the model for use in either a first blush covariance matrix or as 

the prior in a Bayesian regression calculation, but it proved more difficult than hoped 

with the hyperspectral data in hand. Figure 22 is a composite RGB image of the actual 

analyzed hyperspectral data of a portion of the site modeled which shows a real chemical 

plume in red.  The green area is residual materials left along the rail spurs. Unfortunately 

there were insufficient resources available to complete the required pixel to pixel image 

registration for the highly distorted hyperspectral images to effectively illustrate the value 

of the hypothesis and show analysis advantage. The precision registration issue continues 

to be a significant hindrance to this approach as discussed in the next section.   

 

3.2 Registration 

 

As mentioned above one of the key element in using physics based modeling to assist in 

the elimination of background clutter is the registration of the actual sensor image with 

the model. The motion (ground, atmospheric, platform, etc.) and distortion (thermal, 

optical, spectral, etc.) of the sensor image, particularly in push broom implementations, 

often makes this a difficult task, especially with low altitude mobile sensing platforms.  

The task usually involves either picking an entity in one image and determining its 

corresponding location on another or picking and object and determining its location.  

PNNL worked on creating an easy to use interface to the second approach 
14

 based on 

                                                 
14

 MG Foley, RJ Carter, HP Foote, LH Gerhardstein, SA Schulze, LR Stoops, SE Thompson, PNNL 

Precision Registration System, PNNL 15376, September 2005, Pacific Northwest National Laboratory, 

Richland, WA 
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standard photogrammetric principles that determine the relative geometries and 

orientation of modeled objects and sensors. Here the mapping is done using a selected set 

of parameters such as interior orientation(IOR-horizontal and vertical size of image, field 

of view of the imager) and the exterior orientation (XOR-three spatial coordinated, three 

angular orientation values). This is easily accomplished with static and stable images and 

platforms by using lines and points to automatically extract feature lines for matching. 

However the process becomes much more complicated with time evolved images and 

platforms such as those illustrated above where the platform is buffeted by atmospheric 

turbulence and the flight path of the platform is subject to dynamic pitch and yawl where 

the lines become disjointed and overlapping curves and the point scattered. 

 

We believe the problem is still manageable, but beyond the scope of this immediate 

project. Because of the nature and magnitude of the required development work, the 

scope was shifted to NGA for funding. 

 

4 Example Results 
 

Among the last sets of data examined were the FY07 tests performed at NTS.  Here an 

LWIR hyperspectral sensor was ground based.  Various gases pertinent to nuclear 

weapons production were simultaneously released in varying concentrations against the 

background of an industrial-like setting. Detailed results are available but too voluminous 

for inclusion here, however the images below give an indication of the observed results.  

 

Figure 23 shows the analysis results for five gasses comparing the 3D-FFT approach 

without spatial filtering to the more standard WMF approach using the entire image for 

whitening in both cases. Only three gases were released at this time period. The relative 

release rates for the gases are indicated by the bar graphs on the right.  The photograph on 

the left is an observer’s view of the actual scene.  The ellipses highlight the highest 

signal-to-noise level for the observed gas plumes which are either dark or light against 

the background depending on the temperature contrast.  The short diagonal region on the 

lower left portion of the image is not a plume, but rather a building roof structure feature 

that is bright in many of the analysis images. In this case the 3D-FFT approach proved to 

be slightly better than the WMF approach.  The dispersion pattern of each gas is slightly 

different as expected.  Each gas is individually separated out of the mixture. 

 

Figure 24 is a similar construct showing a different gas and concentration mixture.  Here 

the WMF approach has the advantage over the 3D-FFT approach without spatial filtering 

in two of the three detections. Again the gases are easily separated. 
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Figure 23.  Ground based LWIR HSI analysis images for three simultaneous gases using 3D-FFT 

(no spatial filtering) and the more traditional WMF analysis. 

 

 
Figure 24.  Ground based LWIR HSI analysis images for three simultaneous gases using 3D-FFT 

(no spatial filtering) and the more traditional WMF analysis. 
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There are additional analysis benefits to be gained by appropriate selection of specific regions as 

illustrated in Figure 25.  Two different gas releases (upper grouping and lower grouping) are 

represented with the same scene background as shown in Figure 23 and Figure 24.  The red 

outline overlaid on the eight individual analysis images in each grouping is area that was used for 

covariance matrix whitening.  Each area has a different effect on eliminating background clutter 

and highlighting the plume. Clearly areas outside of the plume and most representative of the 

clutter under the plume have the largest effect.  The highest signal to noise for the plume are 

highlighted by the yellow ellipses.  

 

 
 

 
 

Figure 25.   Whitened images of two gas releases (upper and lower groupings) using the 

regions highlighted in red as the whitening area for clutter mitigation. 
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5 Summary and Recommendations 
 

The MIST program made extensive explorations of both improving old techniques and 

and exploring new methods for analysis of gas plumes from LWIR hyperspectral sensors.  

The main contributions to date have been the recognition that significant signal to noise 

enhancement via background clutter mitigation can be achieved by using selective pieces 

of the background for whitening the data in an iterative approach. This is true for both 

aerial and ground based sensor data.  

 

Since the program was terminated a year prior to plan several of the final integration 

pieces were left incomplete. An easy to use comparative and iterative interface for 

applying all the tools for an optimized analysis result which was scheduled for the final 

year of the project was not completed.  The manual results showed the clear benefit of the 

approach. Precision registration of images (first on a pixel and then on a sub-pixel level) 

with physics based models of the scene to help mitigate clutter was initiated under the 

program started but not achieved due to poor image quality.  A more robust automatic 

registration process or short exposure, 3-D focal plane data cubes are required to explore 

the technique.  An evaluation of the value of the approach is therefore still pending and 

should be completed in the future, but the effort required will be substantial either on the 

hardware or software side.  Lack of precision registration has also hampered the 

integration of multiple images to capitalize on statistical advantage of time evolution and 

multiple images of the same scene. 

 

While the MIST program represents a step forward, the fusion of other measurement 

modalities should also be explored. More orthogonal vectors added to the data enhance 

the statistics even further allowing better determinations of gas types, concentrations, 

volumes, release rates and measurement confidence. 



 

 36 

 

6  Papers, Publications, Presentations & Software 
 

The following is list of publications, presentations and software that are a product of the 

program. 

 

Michael A. Lind, Software for Generating ROC Curves for Hyperspectral Data Cubes 

and Flat Images, PNNL-17243, December 2007, Pacific Northwest National Laboratory, 

Richland, WA 

 

Michael A Lind, Harlan Foote, Patrick Mackey, Patricia Medvick, and Lisa Nuffer, 

Using the frequency Domain for Plume Detection: Whitened 3D_FFT compared to 

WMF, presented at SAEF/SMUG#12 November 14-16,2007, Chantilly, VA  PNNL-SA-

57957  

 

Patricia Medvick, Harland Foote, Lisa Nuffer and Michael Lind, Whitening Strategies 

for Enhanced Chemical Detection, presented at SAEF/SMUG#12 November 14-

16,2007 Chantilly, VA PNNL-SA-57956 

 

Patrick Heasler, Sandy Thompson, Mike Foley, MIST Task 1 Report: Bayesian 

Algorithms for Multiple Image Plume Estimation, PNNL-17160, December 2007, 

Pacific Northwest National Laboratory, Richland, WA 

 

Patricia A, Medvick, Michael A. Lind, Patrick S. Mackey, Lisa L, Nuffer, Harlan P. 

Foote, 3D-FFT for Signature Detection in LWIR Images, PNNL 17105, November 

2007, Pacific Northwest National Laboratory, Richland, WA 

 

Michael A Lind, Harlan Foote, Patricia A. Medvick, Comparative Analysis of Gas 

Plumes Detection in Simulated LWIR Hyperspectral Data Cubes Using Variations of 

PCA, WFM and Entropy, PNNL-SA-57144, August 2007, Pacific Northwest National 

Laboratory, Richland, WA 

 

Michael A Lind, Harlan P. Foote, Patricia A. Medvick, Comparative Analysis of Gas 

Plumes Using PCA, WFM, ICA, and Entropy on Artificial LWIR Hyperspectral Data 

Cubes, PNNL-SA-56072, June 2007, Pacific Northwest National Laboratory, Richland, 

WA  

 

Patricia A Medvick, Lisa L Nuffer, Harlan P. Foote, Michael A. Lind, Adaptive 

Whitening for Rapid Processing of Hyperspectral Images, PNNL-16658, May 2007, 

Pacific Northwest National Laboratory, Richland, WA 

 

Michael A. Lind, Jonathan L. Barr, Modeling and Software Scene Simulation for Long 

Wavelength Infra-Red Hyper-Spectral Dada Cubes, PNNL-17213, 2007,  Pacific 

Northwest National Laboratory, Richland, WA 
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Michael A. Lind and Jonathan L Barr.  2007,  Modeling and Software Scene Simulation 

for Long Wavelength Infra-Red Hyper-Spectral Imaging Ground Clutter ,  PNNL-SA-

55971 Pacific Northwest National Laboratory, Richland, WA. 

 

Patrick G. Heasler, Michael G. Foley, and Sandy E. Thompson,  2007.  Consequences of 

Mixed Pixels on Temperature Emissivity Separation ,  PNNL-16330, Pacific Northwest 

National Laboratory, Richland, WA.  

 

Andrea S. Renholds, Sandy E. Thompson, and SJ Walsh.  2007.  Metric Literature 

Review 2007. ,.  PNNL-SA-54694. Richland, WA 

 

Patrick Heasler, Christian Posse, Jeff Hylden and Kevin Anderson, Nonlinear Bayesian 

Algorithms of Gas Plume Detection and Estimation form Hyperspectral Thermal 

Image Data, Sensors 7(6) 905-920, 2006 

 

Thompson SE, and MG Foley.  2006.  Improvements in Spectral Processing Science.  

Presented by Sandra E Thompson (Invited Speaker) at NA-22 meeting, New York City, 

NY on December 12, 2006.  PNNL-SA-53118 

 

Andrea Renholds, Error Propagation through MIST Algorithms, April, 2006 

 

Renholds AS, and JC Solinsky.  2005.  Physical Model Overview and Nonlinear 

Bayesian Regression for MIST .  PNNL-15421, Pacific Northwest National Laboratory, 

Richland, WA.  

 

MG Foley, RJ Carter, HP Foote, LH Gerhardstein, SA Schulze, LR Stoops, SE 

Thompson, PNNL Precision Registration System, PNNL 15376, September 2005, 

Pacific Northwest National Laboratory, Richland, WA 

 

JC Solinsky, HP Foote, PA Medvick, and LL Nuffer, Sample Location Using 

Independent Component Analysis (ICA), TIE2005 Conference presentation, Sandia 

National Lab, (4/13/05) 

 

JC Solinsky, Detection and Estimation Using Models of Real World ”Object” 

Measurements, PNNL 14847, November 2004 

 

JC Solinsky, HP Foote, Detection Metrics in Image Analysis, PNNL-14795, August 

2004, Pacific Northwest National Laboratory, Richland, WA 

 

Solinsky JC, MG Foley, HP Foote, LH Gerhardstein, LR Stoops, SK Wurstner, and AF 

Schenk.  2003.  Assisted, 2-1/2D Registration of Imagery to Ground-Based Objects for 

Deriving Measurements from Multi-Spectral Imagery.  PNNL-SA-38780, Pacific 

Northwest National Laboratory, Richland, WA 

 

Solinsky JC, MG Foley, HP Foote, LH Gerhardstein, LR Stoops, and SK Wurstner.  

2003,  ,  PNNL-SA- Assisted 2-D Registration of Imagry to Ground –Based Objects for 
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Deriving Measurements for Multi-Spectral Imagry PNNL-SA-38564, Pacific Northwest 

National Laboratory, Richland, WA. Michael Lind 2006 

 

SOFTWARE 

 

A general description of the software developed under the program is referenced in the 

publications above.  Software is available upon request either as an executables or as 

source codes. 

 

Spectral Binning v4.   This program quickly estimates the effects of spectral binning 

errors and calibration errors in LWIR detectors taking into account the gas being selected 

and the intervening atmosphere to establish base maximum accuracy numbers.   Michael 

Lind 2005 

 

LWIR FILE Conversion Utility v4.  This program converts material, atmospheric, 

albedo, and other high resolution long wave infra red spectra into detector apodized data 

files. Multiple apodization schemes, detector profiles and I/O file formats are 

accommodated.  Michael Lind 2006 

 

LWIR Scene Generator v14. This easy to use program generates simulated random 

background NADIR LWIR data cubes taking into account the fill range of atmospheric 

conditions, plume gasses and temperatures, ground albedos and temperatures.  A variety 

of plume shapes, concentration profiles, background shapes, background clutter statistics 

and detector profiles are possible.  These artificial data cubes are realistic representations 

of a variety of ground clutter situations with full ground truth.  They are used for baseline 

comparisons of various analysis techniques.  The program includes analysis routines 

using FFT, Entropy, Covariance Matrix Eigenvalues. Michael Lind 2007. 

 

IROC Curve Generator v8.  This program generates receiver operating characteristic 

(ROC) curves and calculates signal to noise from flat images and data cubes. It calculates 

the image statistics and has provisions for both automatic and manual determination of 

the “truth” region in the images.   Michael Lind 2007. 

 

pca.  This program calculates principal components and has been combined with 

runICA. Lisa Nuffer 2007 

 

runICA.  This programs performs whitening (with and without region of interest masking 

fro plume enhancement) and independent component analysis on plain text hyperspectral 

data files and has an option to calculate the eigenvalues of the covariance matrix. It uses 

the CLAPACK and BLAS math libraries Lisa Nuffer, Harlan Foote and Pat Medvick 

2007 

 

wmfilter.  The original program developed in 2004 is a command line and supervision 

driven C code that displays bitmaps of matched filter results.  The new version finished in 

2007 fits into TestEngine1 and runs without supervision. The LAPACK library is used 

extensively.  Larry Gerhartstein, Patrick Mackey and Pat Medvick. 



 

 39 

 

bsa. This program, still in the early development process is used for blob identification 

and analysis via attribute vectors to identify regions of interest.  Larry Gerhardstein, 

Patricia Medvick 2006. 

 

3DFFT-MF.   This program applies a whitened matched filter in the Fourier domain.  

The program makes extensive use of the FFTW library which requires open source 

distribution. The matched filter is constructed from a specified atmospheric compensated 

and apodized gas spectra and applied to each pixel of the data cube. Spatial filters that 

average over a specified observation diameter can also be applied as well as contrast 

adjustment. Color can be added using a blackbody color map and the output saved as a 

JPEG. Patrick Mackey and Harlan Foote 2007. 

 

TestEngine1. This program still in its early phases is the glue that binds all the above 

elements together either via batch processing files or a GUI interface allowing 

comparison calculations and controlling output display formats. Patrick Mackey and 

Patricia Medvick 2007. 


