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Executive Summary

Remote sensing methods are a significant element of nonproliferation programs aimed at

detecting activities and materials associated with developing nuclear capabilities. Long wave

infrared spectroscopy is capable of detecting materials of interest from substantial distances.

The effectiveness of these measurement systems is at least partially controlled by the signal

to noise ratio of the image and how well the analysis algorithms remove background clutter

and preserve signal. Having a covariance matrix that is invertible is central to performing

this separation.

The goal of the Spectral Library Statistical Analysis (SLSA) project is to improve clutter

removal using information gleaned from laboratory-collected spectral libraries. Due to the

small number of repeated measurements in spectral libraries relative to the number of spectral

channels, classical methods for approximating covariance matrices are not adequate.

The goal of this study is to investigate shrinkage estimation as an approach to providing an

invertible covariance matrix estimate in the case where the number of spectral measurements

is less than the number of spectral channels. The approach is an analytic method for arriving

at a target matrix and shrinkage parameter that modify the degenerate covariance matrix

obtained from the data to make it invertible. The theory is discussed to develop different

estimates. The resulting estimates are computed and inspected on a set of hyperspectral

data. This technique shows some promise for arriving at an invertible covariance estimate

for small hyperspectral data sets.
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1.0 Introduction

Remote sensing methods are a significant element of nonproliferation programs aimed at

detecting activities and materials associated with developing nuclear capabilities. Long wave

infrared spectroscopy is capable of detecting materials of interest from substantial distances.

The effectiveness of these measurement systems is at least partially controlled by the signal

to noise ratio of the image and how well the analysis algorithms remove background clutter

and preserve signal. Having a covariance matrix that is invertible is central to performing

this separation.

Analyzing hyperspectral images for weak signals is a challenging problem because the spectral

structure associated with the background of a scene can overwhelm the signal associated

with the material of interest. There are a variety of methods for whitening the image by

removing the background or clutter and working with the estimated net signal image. A

common approach is to use all the pixels in a scene to estimate a mean vector and covariance

matrix and to use these two quantities for the background subtraction. This approach works

best with an image that has a homogeneous or stationary background. To the extent that

the background is not stationary, i.e., there is a trend in the background or the background

consists of a mosaic of different types, the subtraction performed with scene mean and

covariance matrix results in biases that can remove the material of interest in some parts of

the scene and fail to remove clutter in other parts of the scene.

One alternative to the whole-scene approach to background removal is to identify background

types in the scene and attempt to conduct specific clutter removals. This process can be

enhanced by developing a library of background types to support the estimation of mean

vectors and background-specific covariance matrices.

The new difficulty that emerges in developing such a library is in estimating the covariance

matrix or more specifically the inverse of the covariance matrix. Hyperspectra can consist

of hundreds of channels. The whitening process requires an estimate of the inverse of the

covariance matrix to perform the operations necessary to generate the estimated net signal

scene. The original data must have significantly more spectra than spectral channels to

use the standard approach for inverting the covariance matrix. So, if the spectra have 250

channels, then there must be many more than 250 measurements to get the inverse directly.

It is rare for a spectral library to have that many repeated measurements of background
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materials. Consequently, alternative methods are necessary to estimate the inverse of the

covariance matrix when the number of observations is much less than the number of spectral

channels.

The literature is rich with estimates of the covariance matrix that attempt to mitigate the

non-invertibility problem, but most papers that have been reviewed to date deal with this

problem in some ad hoc setting. As an example, Landgrebe et al. (Hoffbeck and Landgrebe

1996; Kuo and Landgrebe 2001) have done much work in image segmentation. They were

confronted with a singular covariance matrix that can’t be used in a discrimination rule

when the number of pixels available for a training set was small. They provided many

estimates that correct this problem and assessed their usefulness by applying them in the

discrimination rules and recording the misclassification rates. While this is common practice,

it lacks independent verification that the estimated inverse is trustworthy.

A common theme encountered in this problem is the use of regularization (also known

as shrinkage estimation). Regularization is essentially taking a weighted average of some

standard estimate and some other (possibly appropriate) estimate known as the target(s).

The idea is that because of the ill-posed nature of the problem, the standard estimate lacks

some desired property. A target estimate is chosen that has the desired property, and

the standard estimate is shrunk toward the target and thus inherits the property. In the

case where the number of measurements is less than the spectral dimension, the empirical

covariance matrix is not invertible. Therefore, an invertible target matrix is chosen. The

weighted average of the empirical covariance and the invertible target matrix is then invertible

(though it is now biased).

Following the path of Ledoit and Wolf, Schäfer and Strimmer provide a way of arriving at

a regularized estimate of the covariance matrix with the goal that the estimate be positive

definite and well conditioned. A well-conditioned estimate of the covariance matrix provides

stable calculation of its inverse.

2.0 Formal Statement of the Problem

Let yi : p×1 for i = 1, 2, . . . , n denote a set of n hyperspectral measurements of dimension p

(number of channels) and let n < p. That is, the number of observations is far less than the
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spectral dimension. In this case, the empirical covariance matrix S : p× p, though unbiased

for the population covariance matrix, is positive semi-definite and hence not invertible.

The approach for finding a suitable and invertible estimate of the covariance matrix con-

sidered here involves finding an estimate for the spectral covariance matrix that is not only

invertible but also well conditioned. The idea is that providing a well-conditioned estimate

of the spectral covariance matrix will also provide a good estimate of the inverse spectral

covariance.

The class of regularized estimates considered has the form

S∗ = λT + (1− λ)S (2.1)

where S is the empirical covariance, T : p × p is the shrinkage target, and λ ∈ [0, 1] is the

shrinkage parameter. It is important to note that when n < p, S is only positive semi-definite

as a number of eigenvalues are zero. It is required that T be positive definite and 0 < λ ≤ 1

for S∗ to be positive definite and invertible.

A typical issue with regularized estimates is how one arrives at an optimal value for λ

in (2.1). Often it has to be approximated using some type of expensive computational

algorithm, such as cross validation or Markov Chain Monte Carlo simulation. Schäfer and

Strimmer (2005) provide an analytical way of arriving at a value for λ. The domain of their

work is functional genomics where the dimension of their data often exceeds the number

of observations available. They set out to provide a positive definite and well-conditioned

estimate of the population covariance matrix. Their approach is explained in the next section.

3.0 Analytic Estimation of the Shrinkage Parameter

Schäfer and Strimmer’s method for finding the optimal λ is based on a theorem set in a

decision theoretic perspective. They define a loss function for using the shrinkage estimate.

The loss function is a distance metric that quantifies how far the shrinkage estimate is from

the true covariance matrix. They use the squared Frobenius norm which is the matrix

analogue of squared error loss. The loss function is viewed as a function of λ and can be

expressed as
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L(λ) = ‖S∗ −Σ‖2
F =

p∑
i=1

p∑
j=1

(λtij + (1− λ)sij − σij)
2 (3.1)

where tij, sij, and σij are the ijth entries in T, S, and the true covariance, Σ, respectively.

Theoretically, we are interested in how much we lose on average when we use the shrinkage

estimate. This leads to use of the risk function, which is the expected value of the loss

function. Taking the expected value of equation (3.1) yields

R(λ) = E[L(λ)] =

p∑
i=1

p∑
j=1

E[(λtij + (1− λ)sij − σij)
2]. (3.2)

We would like to find the value of λ that gives us the minimum risk. Optimizing equation

(3.2) with respect to λ yields the solution

λ∗ =

∑p
i=1

∑p
j=1 Var(sij)− Cov(tij, sij)∑p

i=1

∑p
j=1 E[(tij − sij)2]

. (3.3)

It can be shown that equation (3.3) is a minimizer of (3.2); thus, λ∗ is called the optimal

shrinkage intensity. Note that (3.3) is optimal regardless of the sample size n, so it may be

applied when n < p. It is also important to note that (3.3) is a theoretical value for the

optimal shrinkage intensity, and it must be estimated from the data. Details are provided

in Shäfer and Strimmer (2005).

4.0 The Target Shrinkage Matrix

Estimating a full covariance matrix Σ : p×p that has p(p+1)
2

separate parameters constitutes

a high dimensional inference problem. The purpose of the target matrix T is to reduce the

number of estimated parameters and help produce a positive definite and well-conditioned

shrinkage estimate S∗.

The suggestion for providing the shrinkage target T is that it should represent the lower

dimensional covariance structure expected in the data. As an example, suppose that there

are p = 3 spectral bands, and we expect the spectral bands to be uncorrelated but each have

a different variance. Then the true covariance matrix could be stated as
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Σ =

σ11 0 0

0 σ22 0

0 0 σ33


and an appropriate estimate and shrinkage target would be

T =

s11 0 0

0 s22 0

0 0 s33


where sii is the empirical variance of the ith spectral channel. Schäfer and Strimmer assert

that providing a correct shrinkage target will lead to the greatest increase of efficiency when

using S∗ as an estimate for Σ as apposed to the empirical covariance matrix S. They also

state that selecting a suitable target “requires some diligence,” which will be explored in the

next section.

5.0 Application to Hyperspectral Data

A hyperspectral image was selected to explore the shrinkage estimator approach. A 100×80

subset of the image was selected where it appeared to be homogeneous. Thus, all of the

pixels in the subset image are expected to have similar spectral signatures. The data have

258 spectral channels. The covariance matrix over all 8000 sample pixels was inspected to

give clues as to what a reasonable shrinkage target may be. Figure 1 shows an image plot of

the covariance matrix. Inspection of the full covariance matrix seems to give little or no clues

as to what a suitable target matrix may be. Keep in mind that the regularization method

being considered works by specifying very few parameters in the target matrix. This being

the case, four commonly used targets are considered in Table 1.

The data were sampled to get a 258 × 25 subset for testing the shrinkage targets in Table

1. All shrinkage targets in Table 1 were positive definite when computed on a sample of 25

pixels. Figure 2 shows an image plot of the shrinkage covariance estimates using each target.

Note that all estimates exhibit similar structure as compared to the full covariance matrix,

though they may differ in the magnitudes of the entries. Even though the pixels in the image

were expected to be homogeneous, the pixels can not be considered exact replicates. To see
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Figure 1: Covariance Matrix of all 8000 Pixels.

how this may affect the results, 100 random samples of size 25 were taken from the 8000

total pixels. The shrinkage estimates were computed on each sample using each of the four

targets. The condition number of each shrinkage estimate was computed for each sample.

Figure 3 provides a boxplot of the condition numbers of the four shrinkage estimates over

the 100 samples.

11



Figure 2: Image Plots of each Shrinkage Estimate Using the Four Target Matrices.

Figure 3: Boxplots of Observed Condition Numbers Computed for the Four Shrinkage Es-
timates on 100 Samples of Size 25. Note that target 3 seems to produce well-conditioned
estimates.

12



Target 1: “Diagonal Common Variance” Target 2: “Diagonal Unequal Variance”
1 estimated parameter p estimated parameters

tij =

{
m = median(sii) if i = j

0 if i 6= j
tij =

{
sii if i = j

0 if i 6= j

λ̂∗ =
∑

i6=j V̂ar(sij)+
∑

i V̂ar(sii)∑
i6=j s2

ij+
∑

i(sii−m)2
λ̂∗ =

∑
i6=j V̂ar(sij)∑

i6=j s2
ij

Target 3: “Common (Co)variance” Target 4 “Constant Correlation”
2 estimated parameters p + 1 estimated parameter

tij =

{
v = avg(sii) if i = j

c = avg(sij) if i 6= j
tij =

{
sii if i = j

r̄
√

siisjj if i 6= j

fij = 1
2

{√
sjj

sii
Ĉov(sii, sij) +

√
sii

sij
Ĉov(sjj, sij)

}
λ̂∗ =

∑
i6=j V̂ar(sij)+

∑
i V̂ar(sii)∑

i6=j(sij−c)2+
∑

i=j(sii−v)2
λ̂∗ =

∑
i6=j V̂ar(sij)−r̄fij∑

i6=j(sij−r̄
√

siisjj)2

Table 1: Four Shrinkage Targets Explored on the Hyperspectral Data and Their Associated
Estimators of the Optimal Shrinkage Intensity.

6.0 Conclusions and Suggestions for Further Study

The covariance matrix in Figure 1 was computed on 8000 pixels each with 258 spectral

channels. This matrix was well conditioned and thus would lend itself to computing a stable

inverse. The resulting inverse would then be used for whitening or discrimination analyses.

The regularized estimates in Figure 2 show similar structure to that of Figure 1. These

covariance matrices were, however, computed using only 25 pixels each with 258 spectral

channels. As a result of using regularization, each of the estimates in Figure 2 is positive

definite and invertible, which is not a property of the empirical covariance matrix S in this

case. Thus, while S cannot be used for whitening, a well-chosen regularized estimate could

be both invertible and well conditioned and therefore suitable for whitening.

The conditioning of the regularized estimates is an important consideration since a well-

conditioned estimate will yield stable calculation of its inverse. One way to measure matrix

conditioning is the condition number–the smaller the condition number, the better condi-

tioned the matrix. Figure 3 gives an example of the variability of the condition number of
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the regularized estimates when computed over 100 samples of size 25. It is apparent that the

estimate using shrinkage target 3 is able to produce well-conditioned estimates and that its

condition number exhibits the smallest variability of the four estimates considered for these

data. Hence the regularized estimate using target 3 may have the potential to produce the

most reliable results in a whitening or discrimination analysis.

This study was only exploratory in nature, and it proved difficult to try and quantify how

“good” any of the four shrinkage estimates were for approximating the true covariance (the

true covariance is not known).

Further study is warranted and may consist of the following:

1. Literature search to elucidate commonly found structures of covariance matrices of

hyperspectral data to in turn give the correct target matrix.

2. Build a statistical model that produces data similar to what is observed. A “true” co-

variance matrix can be specified to generate the data, and then the shrinkage estimates

can be compared to the truth.

3. Explore other types of shrinkage estimates as in Hoffbeck and Landgrebe (1996) and

Kuo and Landgrebe (2001).

4. Explore the methods proposed by Berge et al. (2007) and Levina et al. (2007) to

obtain an estimate of the inverse covariance matrix directly.
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[8] Schäfer, J. and Strimmer,K. (2005) A shrinkage approach to large-scale covariance matrix

estimation and implications for functional genomics. Statistical Applications in Genetics

and Molecular Biology. 4, 32.

15


