

Department of Energy – Office of Science Pacific Northwest National Laboratory

Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2013

SF Snyder JM Barnett MY Ballinger

May 2014

Proudly Operated by Battelle Since 1965

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY

operated by

BATTELLE

for the

UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
ph: (800) 553-6847
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

Department of Energy – Office of Science Pacific Northwest National Laboratory

Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2013

SF Snyder JM Barnett MY Ballinger

May 2014

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99352

Summary

The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim. The facility has two buildings with the potential to emit low levels of radioactive materials. This is the second Radioactive Air Emissions Report for MSL since DOE-SC contracted for exclusive use of its radiological operations effective October 1, 2012. The operations remain unchanged from the previous year.

This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, "National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities" and Washington Administrative Code (WAC) Chapter 246-247, "Radiation Protection—Air Emissions." Compliance is indicated by comparing the estimated effective dose equivalent (EDE) to the maximally exposed individual (MEI) with the 10 millirem per year (mrem/yr) U.S. Environmental Protection Agency (EPA) standard. The MSL contains only sources classified as fugitive emissions. Despite the fact that the regulations are intended for application to point source emissions, fugitive emissions are included with regard to complying with the EPA standard.

The EDE to the MSL MEI due to routine operations in 2013 was 5E-05 mrem (5E-07 mSv). No nonroutine emissions occurred in 2013. The MSL is in compliance with the federal and state 10 mrem/yr standard.

For further information concerning this report, you may contact Thomas M. McDermott, U.S. Department of Energy, Pacific Northwest Site Office, by telephone at (509) 372 4675 or by e-mail at tom.mcdermott@pnso.science.doe.gov.

CERTIFICATION OF PNNL-22342-2

DOE-SC

Pacific Northwest National Laboratory Marine Sciences Laboratory Radionuclide Air Emissions Report Calendar Year 2013

I certify under penalty of law that I have personally examined and am familiar with the information submitted herein and, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment. See, 18 U.S.C. 1001. [verbatim from 40 CFR 61, Subpart H, 61.94(b)(9)]

Roger E. Snyder, Manager U.S. Department of Energy

Pacific Northwest Site Office

Date

Acronyms and Abbreviations

BL-S Battelle Land - Sequim
CFR Code of Federal Regulations

Ci curie

CY calendar year

DOE U.S. Department of Energy

DOE-SC U.S. Department of Energy, Office of Science

EDE effective dose equivalent

EPA U.S. Environmental Protection Agency HEPA high efficiency particulate air (filter)

km kilometer

Major a radioactive point source having a radiological dose potential of greater than

0.1 mrem/yr EDE, based on emissions that would result if all pollution-control equipment

did not exist but facility operations were otherwise normal

MEI maximally exposed individual

mi mile(s)

Minor a radioactive point source having a radiological dose potential of less than or equal to

0.1 mrem/yr EDE, based on emissions that would result if all pollution-control equipment

did not exist but facility operations were otherwise normal

mrem millirem [i.e., 1×10^{-3} rem]

MSL Pacific Northwest National Laboratory Marine Sciences Laboratory

mSv millisievert NA not applicable

NESHAP National Emission Standards for Hazardous Air Pollutants

NOC Notice of Construction

PCM periodic confirmatory measurement
PNNL Pacific Northwest National Laboratory

PNSO Pacific Northwest Site Office

PTE potential-to-emit
OA quality assurance

RAEL Radioactive Air Emissions License

rem roentgen equivalent man

SD standard deviation

Sv sievert

UDF unit-release dose factor

WAC Washington Administrative Code

WDOH Washington State Department of Health

yr year

Contents

Sum	maryiii
CER	TIFICATION OF PNNL-22342-2v
Acro	onyms and Abbreviationsvii
1.0	Introduction
	1.1 Battelle Land – Sequim and MSL Description
2.0	Radionuclide Air Emissions
	2.1 Major, Minor, and Fugitive Emissions Points
3.0	Dose Assessment
	3.1 Dose Model and Potential Receptors
	3.2 Compliance Assessment
4.0	Supplemental Information6
	4.1 Population Dose Estimate
	4.2 Compliance Status with Subparts Q and T of 40 CFR 61
	4.3 Other Supplemental Information
5.0	References
Appe	endix A COMPLY Unit Dose Factors
Appo	endix B List of Radioactive Materials Handled or Potentially Handled, or Authorized for Use at MSL in 2013
	Figures
Figu	re 1.1. MSL in Northwestern Washington State
_	re 1.2. Battelle Land-Sequim and Marine Sciences Laboratory
8"	2 12 Saucine Band Sequin and Marine Selences Bacoratory
	Tables
Tabl	le 2.1. 2013 MSL Inventory and Emissions Estimates
Tabl	le 3.1. COMPLY Input Parameters
Tabl	le 3.2. Potential MSL MEI Locations
Tabl	le 3.3. MSL 2013 Radionuclide Emissions and MEI Dose
Tabl	le 4.1. Major U.S. Cities within 50 mi of MSL6
	le A.1. MSL Unit Dose Factors
Tabl	le B.1. List of Radioactive Materials Handled or Potentially Handled, or Authorized for Use at MSL in 2013

1.0 Introduction

The Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) is located on Battelle Land-Sequim (PNSO 2013). Operations at Battelle Land-Sequim are managed by Battelle Memorial Institute. The U.S. Department of Energy, Office of Science, Pacific Northwest Site Office (DOE-SC PNSO) has an exclusive use contract for MSL activities. MSL is a location designated for PNNL operations, and is on the coast of Washington State's Olympic Peninsula (**Figure 1.1**).

This radiological air emissions report meets the Washington Department of Health (WDOH) requirements for radiological National Emission Standards for Hazardous Air Pollutants (NESHAP) compliance reporting for the activities at MSL for calendar year (CY) 2013.

Figure 1.1. MSL in Northwestern Washington State

1.1 Battelle Land – Sequim and MSL Description

Battelle Land-Sequim (**Figure 1.2**) encompasses 150 acres of uplands and tidelands about 7.5 acres of which has been developed for research operations. The research operations occur at several laboratories and other facilities in an area referred to as MSL, which includes analytical and general purpose laboratories and wet or support laboratories supplied with heated and cooled freshwater and seawater. There are two emission units at MSL with the potential to emit low levels of radioactive material. In addition, MSL has a state-of-the-art waste seawater treatment system and a dock facility for a 28-foot research vessel and a specialized scientific diving boat.

Battelle Land-Sequim on Washington State's Olympic Peninsula is the site of DOE's only marine research laboratory. It lies on the shores of the Strait of Juan de Fuca and is in the rain shadow of the Olympic Mountains in Clallam County at approximate coordinates 48°04'40" N, 123°02'55" W. Despite its coastal location, it receives less than 15 inches of rainfall on average annually. Average monthly temperatures range from 31°F to 70°F. Nearby cities are Sequim (population 6,600), Port Angeles (population 19,000), and Port Townsend (population 9,100) (DOC 2011). Seattle is approximately 50 miles (mi) from MSL. The nearest sea border with Canada is about 17 mi from MSL in the Salish Sea; the nearest Canadian land border is about 25 mi northwest from MSL.

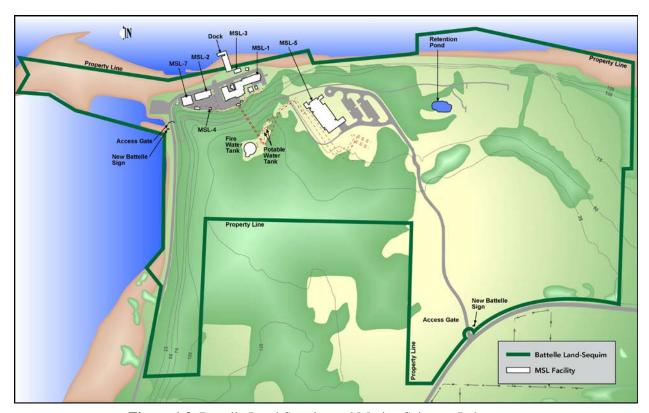


Figure 1.2. Battelle Land-Sequim and Marine Sciences Laboratory

2.0 Radionuclide Air Emissions

The two registered MSL emission units are described and emissions estimates for operations during CY 2013 presented.

2.1 Major, Minor, and Fugitive Emissions Points

Two nonpoint source minor emission units associated with buildings MSL-1 and MSL-5 are registered with the state of Washington under the Radioactive Air Emissions License (RAEL) -014. Radioactive air emissions continue to be well below the criteria for classification as a minor emission unit (i.e., potential-to-emit [PTE] contribution is < 0.1 millirem per year (mrem/yr) effective dose equivalent [EDE] to the MEI). Information regarding the radionuclides-of-concern, emission rates, and emission unit physical characteristics are described below.

The emission units include EP-MSL-1 and EP-MSL-5 (**Figure 1.2**). EP-MSL-1 is located on the tidelands, and EP-MSL-5 is located on the upland. The emission unit characteristics are the same for both MSL-1 and MSL-5. These buildings have several locations where radioactive air emissions may originate and exit the building. While they are not fugitive by definition, emissions are fugitive in nature; however, because emissions can come from several points within each building, the emission unit is characterized as a nonpoint source (WAC 2011). Emissions from each emission unit are identified as < 0.1 mrem/yr EDE and the associated registration PTEs indicate each emission unit characteristic will primarily be particulates with building PTEs < 5E-04 mrem/yr EDE.

Radiological operations at MSL emit very low levels of radioactive materials. <u>Appendix B</u> contains the full list of radionuclides that may be handled at MSL. The 2013 radioactive material emissions to the air are indicated in **Table 2.1**. The 40 CFR 61, Appendix D method of determining unabated emissions was used. No credit was taken for abatement controls (e.g., HEPA filtration) at MSL-1 or MSL-5.

Table 2.1. 2013 MSL Inventory and Emissions Estimates

		Site Inventory	MSL-1 2013 Release ^(a)	MSL-5 2013 Release ^(a)
Nuclide	Emission Type	(Ci)	(Ci)	(Ci)
H-3	beta/gamma	1.37E-06	-	1.37E-09
C-14	beta/gamma	6.41E-07	-	6.41E-10
K-40	beta/gamma	4.78E-09	-	4.78E-12
Fe-55	beta/gamma	3.45E-11	-	3.45E-14
Co-57	beta/gamma	9.46E-12	-	9.46E-15
Co-60	beta/gamma	1.75E-11	-	1.75E-14
Sr-90	beta/gamma	8.32E-10	-	8.32E-13
Tc-99	beta/gamma	1.70E-07	-	1.70E-10
Ru-106	beta/gamma	4.05E-10	-	4.05E-13
Sb-125	beta/gamma	5.32E-10	-	5.32E-13
I-129	beta/gamma	1.15E-14	-	1.15E-17
Cs-134	beta/gamma	3.14E-09	-	3.14E-12
Cs-137	beta/gamma	3.72E-08	-	3.72E-11
Eu-152	beta/gamma	6.18E-11	-	6.18E-14
Eu-154	beta/gamma	1.68E-11	-	1.68E-14
Eu-155	beta/gamma	1.77E-11	-	1.77E-14
Pb-210	alpha	1.28E-10	-	1.28E-13
Po-208	alpha	6.96E-07	-	6.96E-10
Ra-226	alpha	2.98E-10	-	2.98E-13
Ra-228	alpha	4.96E-11	-	4.96E-14
Th-228	alpha	2.60E-10	-	2.60E-13
Th-230	alpha	1.53E-10	-	1.53E-13
Th-232	alpha	1.35E-08	-	1.35E-11
U-234	alpha	3.80E-04	1.9E-10	2.23E-10
U-235	alpha	3.72E-05	1.86E-11	2.01E-11
U-238	alpha	2.92E-03	1.46E-09	1.5E-09
Pu-238	alpha	8.16E-11	-	8.16E-14
Pu-239	alpha	3.75E-10	-	3.75E-13
Pu-240	alpha	3.75E-10	-	3.75E-13
Am-241	alpha	4.34E-10	-	4.34E-13
	TOTAL beta/gamma		0.00E+00	2.23E-09
	TOTAL alpha		1.67E-09	2.45E-09
(a) Emissions ba	ased on 40 CFR 61, Appe	ndix D methods.		

3.0 Dose Assessment

The potential impact of MSL radiological air emissions is described in this section. Radiological operations at MSL have not changed from the prior year. A review of radiological assessment needs was published in the Data Quality Objects report (Barnett et al. 2012).

3.1 Dose Model and Potential Receptors

The COMPLY Code version 1.6 (Level 4) was used for estimating dose for comparison to the EPA standard of 10 mrem/yr EDE to any member of the public (40 CFR 61, Subpart H and WAC 246-247). This code is approved for use for compliance determination (40 CFR 61, Appendix E). Input parameters, originally reported in Barnett et al. (2012), were not changed (**Table 3.1**).

Table 3.1. COMPLY Input Parameters

Parameter	MSL Value
Nuclide names	(Level 4) varies by year>
Concentrations (Ci/m ³)	NA
Annual possession amount (Ci)	NA
Release rates (Ci/yr or Ci/s)	<varies by="" year=""></varies>
Release height (m)	8 m
Building height (m)	8 m
Stack or vent diameter (m)	NA
Volumetric flow rate (m ³ /s)	NA
Distance from source-to-receptor (m)	190 m ^(a)
Building width (m)	30 m
Wind speed (m/s)	2 m/s
Distances to sources of food production (m)	190 m ^(a)
Stack temperature (°F)	NA
Ambient air temperature (°F)	NA
Wind rose	$NA(nwr)^{(b)}$
Building length	NA(nwr) ^(b)
NA = not applicable	
(a) Smallest receptor distance either MSL-1 or MSL-5 appli	
(b) $NA(nwr) = not applicable because no wind rose data is$	used.

Potential receptor locations for 16 compass directions are provided in **Table 3.2**, as reported in Barnett et al. (2012), which concluded that continuation of the 190-m source-to-receptor distance used in prior evaluations would result in an over-estimate of any expected receptor impacts but would continue to be used. The nearest location where a member of the public would actually reside or abide (e.g., dwelling, business, school, office) relative to the MSL-1 or MSL-5 emissions locations was determined to be 270 m W or WNW. Given that winds blow predominantly toward the east (see Table 4.3 of Barnett et al. 2012), away from either of these 270 m receptors, an additional level of conservatism is included.

Table 3.2. Potential MSL MEI Locations

Direction from MSL-1 or MSL-5	Smallest distance to BL-S boundary	Smallest distance to a receptor outside of BL-S boundary
N	-	1,790 m res ^(a)
NNE	-	39,700 m res ^(a)
NE	-	9,630 m res ^(a)
ENE	-	2,000 m res ^(a)
E	-	1,900 m res ^(a)
ESE	-	2,620 m res
SE	-	3,930 m res
SSE	-	4,470 m res
S	570 m	640 m res/farm
SSW	630 m	820 m res; 290 m farm
SW	360 m ^(a)	420 m res ^(a)
WSW	230 m	290 m res
W	220 m	270 m res
WNW	230 m	270 m res
NW	280 m	520 m res
NNW	-	1,000 m res/farm

BL-S = Battelle Land-Sequim

A dash (-) = a shoreline location where no potential receptor could reside or abide.

res = residence site

(a) Distance from MSL-1 applied; all others from MSL-5.

Compliance Assessment

The dose standard in 40 CFR 61, Subpart H, applies to radionuclide air emissions, other than radon, from DOE facilities. Dose is estimated as the product of the emission rate (Ci/yr) and unit dose factor (mrem/yr EDE at MEI location per Ci/yr released). Unit dose factors for a number of nuclides are indicated in Appendix A. The ²⁴¹Am unit dose factor was applied to all alpha-emitters and the ¹³⁷Cs unit dose factor was applied to all beta/gamma emitters, as a conservative measure, except for ¹²⁹I which used the nuclide-specific dose factor. For CY2013, the MSL MEI location was assumed to be 190 m (0.12 mi) from the emission point. The EDE to the 2013 MEI from routine and non-routine point source emissions was 5E-05 mrem (5E-07 mSv). Table 3.3 shows the relative contributions of each nuclide and facility to the MEI dose. The 2012 MEI estimate was 9E-6 mrem/yr (9E-08 mSv/yr) EDE.

Table 3.3. MSL 2013 Radionuclide Emissions and MEI Dose

	MSL-1	MSL-5	Total
RELEASES (Ci)			
Beta/gamma	0	2.23E-09	2.23E-09
Alpha	1.67E-09	2.45E-09	4.12E-09
MEI EDE (mrem)			
Beta/gamma ^(a)	0	1.0E-06	1.0E-06
Alpha ^(b)	2.0E-05	2.9E-05	4.8E-05
Total (mrem)	2.0E-05	$\overline{3.0E-05}$	4.9E-05
DOSE CONTRIBUTION (%)			
Beta/gamma	0%	4%	2%
Alpha	100%	90%	98%

(a) Unit dose factor for ¹³⁷Cs applied to estimate dose for all nuclide emissions except ¹²⁹I. (b) Unit dose factor for ²⁴¹Am applied to estimate dose.

4.0 Supplemental Information

This section provides supplemental information related to MSL radionuclide air emissions in 2013. Supplemental information was requested as part of a Memorandum of Understanding between DOE and EPA (DOE 1995).

4.1 Population Dose Estimate

An estimated 132,000 people (on the U.S. side of the border) live within 30 mi of MSL; another estimated 1.45 million (U.S.) reside 30–50 mi from MSL. The major cities at various distances are indicated in **Table 4.1**. Victoria, British Columbia is the only major Canadian city within 50 mi of MSL. The Victoria metropolitan area (20–30 mi distant) has an estimated population of 358,000, almost three times the entire U.S. population within 30 mi of MSL.

Distance (mi)	Major Cities
0–10	City of Sequim
10-20	Port Angeles (portion), Port Townsend
20-30	Port Angeles (portion), Oak Harbor
30–40	Anacortes, Bremerton (portion), Edmonds, Mukilteo, Poulsbo, Silverdale, Stanwood
40–50	Arlington, Bainbridge Island, Bothell, Bremerton (portion), Burlington, Edmonds, Everett, Kenmore, Kirkland, Lake Stevens, Lynnwood, Marysville, Mount Vernon, Mountlake Terrace, Port Orchard, Seattle (large portion), Snohomish

Table 4.1. Major U.S. Cities within 50 mi of MSL

The population dose is simply estimated in a manner that greatly overestimates the actual population dose. The MEI dose multiplied by the 30-mi U.S. population results in a population dose of 6.5E-3 person-rem. Applying this same method to the Victoria metropolitan area, Canada, all of which is 20-30 mi distant, would result in an additional 1.8E-2 person-rem. The Canadian population dose is even more greatly overestimated than the US population dose estimate.

4.2 Compliance Status with Subparts Q and T of 40 CFR 61

- No storage or disposal of radium bearing materials occurs at MSL; therefore, 40 CFR 61, Subpart Q does not apply to MSL operations.
- No uranium mill tailings or ore disposal activities have been conducted at MSL; therefore,
 40 CFR 61, Subpart T does not apply to MSL operations.

4.3 Other Supplemental Information

- Periodic confirmatory measurement information is not required by the Notices of Construction (NOCs).
- The PNNL Radioactive Material Tracking system is used to manage potential emissions below permit thresholds resulting in overall confirmation of inventory limits and emissions estimates to respective NOCs.
- Quality assurance (QA) program status of compliance with 40 CFR 61, Appendix B, Method 114. No air sampling is conducted at MSL; therefore, the QA program compliance status with 40 CFR 61, Appendix B, Method 114 does not apply.

5.0 References

- 40 CFR 61, as amended. *National Emission Standards for Hazardous Air Pollutants* (NESHAP), Subpart H, "National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities."
- 40 CFR 61, as amended. *National Emission Standards for Hazardous Air Pollutants* (NESHAP), Subpart H, Appendix B to Part 61, "Test Methods."
- 40 CFR 61, as amended. *National Emission Standards for Hazardous Air Pollutants* (NESHAP), Subpart H, Appendix D to Part 61, "Methods for Estimating Radionuclide Emissions."
- 40 CFR 61, as amended. *National Emission Standards for Hazardous Air Pollutants* (NESHAP), Subpart H, Appendix E to Part 61, "Compliance Procedures Methods for Determining Compliance with Subpart I."
- 40 CFR 61, as amended. *National Emission Standards for Hazardous Air Pollutants* (NESHAP), Subpart Q, "National Emission Standards for Radon Emissions from Department of Energy Facilities."
- 40 CFR 61, as amended. *National Emission Standards for Hazardous Air Pollutants* (NESHAP), Subpart T, "National Emission Standards for Radon Emissions from the Disposal of Uranium Mill Tailings."
- Barnett JM, KM Meier, SF Snyder, EJ Antonio, BG Fritz, and TM Poston. 2012. *Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the Marine Sciences Laboratory, Sequim Site*. PNNL-22111, Pacific Northwest National Laboratory, Richland, WA.
- DOC—U.S. Department of Commerce. 2011. 2010 Census Summary File 1- Washington, 2010 Census of Population and Housing [wa_2010_sf1_asr_city.xlsx], U.S. Census Bureau, Department of Commerce, Washington, D.C. Last accessed 3/18/2014 at http://www.ofm.wa.gov/pop/census2010/data.asp.
- DOE—U.S. Department of Energy. 1995. "Memorandum of Understanding Between the U.S. Environmental Protection Agency and the U.S. Department of Energy Concerning the Clean Air Act Emission Standards for Radionuclides 40 CFR Part 61 Including Subparts H, I, Q & T" (letter to E. Ramona, U.S. Environmental Protection Agency) from Raymond Berube, U.S. Department of Energy, Washington, D.C., May 16.
- DOE—U.S. Department of Energy. 2009. *Guide of Good Practices for Occupational Radiological Protection in Uranium Facilities*. DOE-STD-1136-2009. DOE, Washington, D.C.
- DOE—U.S. Department of Energy. 2010. *Calculating Potential-to-Emit Radiological Releases and Doses*. DOE/RL-2006-29, Rev 1. Richland Operations Office, Richland, WA.
- DOE—U.S. Department of Energy. 2011. *Radiation Protection of the Public and the Environment*. DOE Order 458.1, admin chg 3. Office of Health, Safety and Security, Washington, D.C.
- EPA—U.S. Environmental Protection Agency. 1989. *User's Guide for the COMPLY Code*. EPA 520/1-89-003, U.S. Environmental Protection Agency, Office of Radiation and Indoor Air, Washington, D.C.

- PNSO—Pacific Northwest Site Office. 2013. *PNNL Terminology Reference Document*. PNSO-REFR-05, U.S. Department of Energy, PNSO, Richland, WA.
- WAC—Washington Administrative Code. 2011. *Radiation Protection Air Emissions*. WAC-246-247, Statutory Law Committee, Olympia, WA.

Appendix A COMPLY Unit Dose Factors

Appendix A COMPLY Unit Dose Factors

As originally reported in Barnett et al. (2012), COMPLY v1.6 was used to determine unit-release dose factors (UDFs), which represent impacts to a hypothetical receptor 190 m from the emission unit with an assumed 2 m/s wind speed and wind blowing toward the receptor 25 percent of the time. These assumptions are based on calculations of COMPLY v1.6 at Level 4 with no wind rose used. The appropriate solubility class to apply was based on those indicated in DOE 2010, and for ¹⁴C the COMPLY default classification was applied as the only option (EPA 1989). UDFs for radionuclides either in current inventory or previously used at MSL are presented.

Table A.1. MSL Unit Dose Factors

		Unit Dose Factor (mrem EDE per Ci/yr
Nuclide	COMPLY Solubility Class	released)
²⁴¹ Am ^(a)	W	11700
¹³³ Ba ^(b)	D	135
$^{14}C^{(c)}$	"1"	1.5
¹⁰⁹ Cd	\mathbf{W}	5.5
⁵⁷ Co	W	4.8
о Со	\mathbf{W}	426
$^{137}\text{Cs}^{(a)}$	D	469
¹⁵⁴ Eu	W	345
¹⁵⁵ Eu	W	13.3
$^{3}H^{(b)}$	V	0.004
¹²⁵ I	D	84.5
^{129}I	D	1250
⁵⁴ Mn	W	27.2
²² Na ^(b)	D	234
⁶³ Ni	W	0.3
²¹⁰ Pb ^(b)	D	1100
²³⁸ Pu	W	10300
²³⁹ Pu	W	11200
¹⁰⁶ Ru	W	13.9
$^{90}{\rm Sr}^{({\rm d})}$	Y	211
⁹⁹ Tc	W	32.7
²³⁴ U	Y	3450
²³⁵ U	Y	3470
²³⁸ U	Y	3110
Natural U ^(e)	Y	3290

Bold font = Alpha-emitting nuclides. All others are beta/gamma emitters.

⁽a) ²⁴¹Am is the surrogate alpha emitter for those not specifically listed; ¹³⁷Cs is the surrogate beta-emitter for those not specifically listed.

⁽b) The solubility class listed is the only option available in COMPLY v1.6.

⁽c) Default class of COMPLY v1.6 used.

⁽d) Solubility class W is preferred, but not an option. Class Y was used as an overestimating assumption.

⁽e) Determined from natural uranium mass fractions: 0.000055 ²³⁴U; 0.0072 ²³⁵U; 0.9928 ²³⁸U (DOE 2009).

Appendix B

List of Radioactive Materials Handled or Potentially Handled, or Authorized for Use at MSL in 2013

Appendix B List of Radioactive Materials Handled or Potentially Handled, or Authorized for Use at MSL in 2013

Table B.2. List of Radioactive Materials Handled or Potentially Handled, or Authorized for Use at MSL in 2013

	DI 240	G 124	TT 166	1.6 0.0	D 140	DI 100	TF 102	TT 00.4
Ac-225	Bk-249	Cs-134m	Ho-166m	Mo-93	Pm-143	Rh-103m	Ta-182m	U-234
Ac-227	Bk-250	Cs-135	I-122	Mo-99	Pm-144	Rh-104	Ta-183	U-235
Ac-228	Br-82	Cs-136	I-123	Mo-103	Pm-145	Rh-105	Tb-157	U-235m
Ag-108	Br-82m	Cs-137	I-125	Mo-104	Pm-146	Rh-105m	Tb-158	U-236
Ag-108m	Br-83	Cs-138	I-126	Mo-105	Pm-147	Rh-106	Tb-160	U-237
Ag-109m	Br-84	Cs-139	I-128	N-13	Pm-148	Rn-219	Tb-161	U-238
Ag-110	Br-84m	Cs-140	I-129	Na-22	Pm-148m	Rn-220	Tc-95	U-239
Ag-110m	Br-85	Cs-141	I-130	Na-24	Pm-149	Rn-222	Tc-95m	U-240
Ag-111	C-11	Cu-64	I-130m	Na-24m	Pm-151	Rn-224	Tc-97	V-48
Al-26	C-14	Cu-66	I-131	Nb-91	Po-208	Ru-97	Tc-97m	V-49
Al-28	C-15	Cu-67	I-132	Nb-91m	Po-209	Ru-103	Tc-98	W-181
Am-240	Ca-41	Dy-159	I-132m	Nb-92	Po-210	Ru-105	Tc-99	W-185
Am-241	Ca-45	Dy-165	I-133	Nb-93m	Po-211	Ru-106	Tc-99m	W-187
Am-242	Ca-47	Dy-169	I-133m	Nb-94	Po-212	S-35	Tc-101	W-188
Am-242m	Cd-107	Er-169	I-134	Nb-95	Po-213	Sb-122	Tc-103	Xe-122
Am-243	Cd-109	Er-171	I-134m	Nb-95m	Po-214	Sb-124	Tc-106	Xe-123
Am-245	Cd-111m	Es-254	I-135	Nb-97	Po-215	Sb-125	Te-121	Xe-125
Am-246	Cd-113	Eu-150	In-106	Nb-97m	Po-216	Sb-126	Te-121m	Xe-127
Ar-37	Cd-113m	Eu-152	In-111	Nb-98	Po-218	Sb-126m	Te-123	Xe-127m
Ar-39	Cd-115	Eu-152m	In-113m	Nb-100	Pr-143	Sb-127	Te-123m	Xe-129m
Ar-41	Cd-115m	Eu-154	In-114	Nb-101	Pr-144	Sb-129	Te-125m	Xe-131m
Ar-42	Cd-113111 Cd-117	Eu-155	In-114 In-114m	Nb-101	Pr-144m	Sc-44	Te-127	Xe-131111 Xe-133
As-74	Cd-117 Cd-117m	Eu-155 Eu-156	In-115	Nd-144	Pu-234	Sc-44 Sc-46	Te-127m	Xe-133 m
			In-115 In-115m					
As-76	Ce-139	Eu-157		Nd-147	Pu-236	Sc-47	Te-129	Xe-135
As-77	Ce-141	F-18	In-116	Ni-56	Pu-237	Se-75	Te-129m	Xe-135m
At-217	Ce-142	Fe-55	In-116m	Ni-57	Pu-238	Se-79	Te-131	Xe-137
Au-193	Ce-143	Fe-59	In-117	Ni-59	Pu-239	Se-79m	Te-131m	Xe-138
Au-194	Ce-144	Fr-221	In-117m	Ni-63	Pu-240	Si-31	Te-132	Xe-139
Au-195	Cf-249	Fr-223	Ir-192	Ni-65	Pu-241	Si-32	Te-133	Y-88
Au-196	Cf-250	Ga-67	K-40	Np-235	Pu-242	Sm-145	Te-133m	Y-90
Au-198	Cf-251	Ga-68	K-42	Np-236	Pu-243	Sm-146	Te-134	Y-90m
Au-198m	Cf-252	Ga-70	Kr-81	Np-237	Pu-244	Sm-147	Th-227	Y-91
Au-199	Cl-36	Ga-72	Kr-81m	Np-238	Pu-246	Sm-148	Th-228	Y-91m
Ba-131	Cm-241	Gd-148	Kr-83m	Np-239	Ra-223	Sm-151	Th-229	Y-92
Ba-133	Cm-242	Gd-149	Kr-85	Np-240	Ra-224	Sm-153	Th-230	Y-93
Ba-133m	Cm-243	Gd-151	Kr-85m	Np-240m	Ra-225	Sm-157	Th-231	Yb-164
Ba-137m	Cm-244	Gd-152	Kr-87	O-15	Ra-226	Sn-113	Th-232	Yb-169
Ba-139	Cm-245	Gd-153	Kr-88	O-19	Ra-228	Sn-117m	Th-233	Yb-175
Ba-140	Cm-246	Ge-68	Kr-89	Os-191	Rb-81	Sn-119m	Th-234	Yb-177
Ba-141	Cm-247	Ge-71	Kr-90	P-32	Rb-83	Sn-121	Ti-44	Zn-65
Ba-142	Cm-248	Ge-71m	La-137	P-33	Rb-84	Sn-121m	Ti-45	Zn-69
Ba-143	Cm-250	Ge-75	La-138	Pa-231	Rb-86	Sn-123	Ti-51	Zn-69m
Be-7	Co-56	Ge-77	La-140	Pa-233	Rb-87	Sn-125	Tl-201	Zr-88
Be-10	Co-57	Ge-77m	La-141	Pa-234	Rb-88	Sn-126	Tl-204	Zr-89
Bi-207	Co-58	H-3	La-142	Pa-234m	Rb-89	Sr-85	Tl-206	Zr-93
Bi-208	Co-60	Hf-175	La-144	Pb-209	Rb-90	Sr-87m	Tl-207	Zr-95
Bi-210	Co-60m	Hf-178m	Lu-177	Pb-210	Rb-90m	Sr-89	Tl-208	Zr-97
Bi-210m	Cr-49	Hf-179m	Lu-177m	Pb-211	Re-186	Sr-90	Tl-209	Zr-98
Bi-210III	Cr-51	Hf-181	Mg-27	Pb-211	Re-187	Sr-91	Tm-168	Zr-99
Bi-212	Cr-55	Hf-182	Mg-28	Pb-214	Re-188	Sr-92	Tm-170	Zr-100
Bi-212	Cs-131	Hg-203	Mn-52	Pd-103	Rh-101	Ta-179	Tm-170	21 100
Bi-213	Cs-131 Cs-132	Ho-163		Pd-103	Rh-101 Rh-102	Ta-179	U-232	
			Mn-54 Mn-56					
Bk-247	Cs-134	Ho-166	Mn-56	Pd-109	Rh-102m	Ta-182	U-233	

Distribution

No. of Copies

City of SequimCity Manager152 W Cedar StSequim, WA 98382

S Burkett

Clallam County
 Department of Community Development
 223 East 4th Street, Suite 5
 Port Angeles, WA 98362

S Gray, Planning Manager

3 Clallam County Commissioners 223 East 4th Street, Suite 4 Port Angeles, WA 98362-3000

> M Chapman, Commissioner J McEntire, Commissioner M Doherty, Commissioner

Clallam County Health & Human Services
 East 4th Street, Suite 14
 Port Angeles, WA 98362

A Brastad, Director

 Confederated Tribes of the Umatilla Indian Reservation
 Richland Office Department of Science and Engineering
 750 Swift Boulevard, Suite 12
 Richland, WA 99352

S Harris, Director

1 Hoh Indian Tribe of the Hoh Indian ReservationP.O. Box 2179Forks, WA 98331

M Lopez, Chairwoman

 Jamestown S'Kallam Tribe of Washington 1033 Old Blyn Highway Sequim, WA 98382

WR Allen, Chairman

No. of Copies

 Lower Elwha Tribal Community of the Lower Elwha Reservation
 2851 Lower Elwha Road Port Angeles, WA 98363

FG Charles, Chairwoman

 Makah Indian Tribe of the Makah Indian Reservation
 P.O. Box 115
 Neah Bay, WA 98357
 TJ Greene, Sr., Chairman

Nez Perce Tribe
 Environmental Restoration and Waste
 Management
 PO Box 365
 Lapwai, ID 83540

G Bohnee

 Olympic Region Clean Air Agency (ORCAA)
 2940 B Limited Lane NW Olympia, WA 98502

F McNair, Director

1 Quileute Tribe of the Quileute ReservationP.O. Box 279La Push, WA 98350

C Woodruff, Chairman

 Port Gamble Indian Community of the Port Gamble Reservation
 31912 Little Boston Road, NE Kingston, WA 98346
 JC Sullivan, Chairman

	No. of Copies			lo. of Copies	
7	U.S. Department of Energy-H	leadquarters		NSITE	
	1000 Independence Ave Washington, D.C. 20585		2	Mission Support Alliance, LLC	C
	AC Lawrence	HS-20		RA Kaldor	H7-28
	JM Blaikie	SC-31.1		DJ Rokkan	H7-28
	A Wallo III (3) GA Vazquez	HS-20 HS-22	30	Pacific Northwest National La	boratory
	R Natoli	HS-24		CM Andersen	K1-38
_				BG Anderson	J2-25
2	U.S. Environmental Protectio	n Agency		EJ Antonio	K3-54
	Region 10			MY Ballinger	BSRC
	Federal & Delegated Air Prog	grams		JM Barnett (3)	J2-25
	1200 Sixth Avenue			CP Beus	K9-20
	Seattle, WA 98101			LE Bisping	K7-68
	D Zhen (2)	AWT-107		SD Cooke	K1-59
	B Zhen (2)	11111 107		JP Duncan	K7-70
1	U.S. Environmental Protectio	n Agency		DL Edwards	K3-54
	U.S. EPA			TJ Fortman	SEQUI
	1310 L Street, NW			BG Fritz	K7-68
	Room 553C			EE Hickey	K3-66
	Washington, D.C. 20005			MD Hughes	SEQUI
	D. D. and John			KM McDonald	J2-25
	R Rosnick			CJ Nichols	J4-50
1	Washington State Departmen	t of Ecology		BE Opitz	K7-68
1	Hanford Project Office	t of Leology		GW Patton	K6-75
	3100 Port of Benton Blvd			JM Rishel	J2-25
	Richland, WA 99354			MR Sackschewsky	J2-25
				RD Sharp	J2-33
	R Skinnarland	B5-18		SF Snyder (2)	K3-54
_				JA Stegen	J2-25
5	Washington State Departmen			MJ Stephenson	J2-25
	WDOH - Radioactive Air Em	issions Section		HT Tilden II	K3-75
	309 Bradley Blvd., Suite 201			PNNL Reference Library (2)	P8-55
	Richland, WA 99352			Rad Air File Plan A1.1.1.4	J2-25
	SD Berven	B1-42	1	IIC Department of Engage	
	PJ Martell, Manager (2)	B1-42	1	U.S. Department of Energy	
	JW Schmidt	B1-42		Office of River Protection	
	R Utley	B1-42		DW Bowser	H6-60
1	Yakama Nation Environmental Restoration W Management Program P.O. Box 151 Toppenish, WA 98948 R Jim	aste			
	P Rigdon				

	No. of		N	o. of	
<u>Copies</u>		<u>C</u>	<u>Copies</u>		
7	U.S. Department of Energy		8	U.S. Department of Energy	
	Pacific Northwest Site Office	e		Richland Operations Office	
	AS Arend	K9-42		DOE-RL Public Reading Room	H2-53
	JL Carlson	K9-42		TW Ferns	A5-15
	JW Christ	K9-42		DE Jackson	A4-52
	TM McDermott (2)	K9-42		DL Kreske	A5-15
	TP Pietrok	K9-42		KD Leary	A2-15
	CJ Swafford-Bennett	K9-42		MK Marvin	A4-52
				BM Pangborn	A5-17
				MD Silberstein	A4-52

Proudly Operated by Battelle Since 1965

902 Battelle Boulevard P.O. Box 999 Richland, WA 99352 1-888-375-PNNL (7665) www.pnnl.gov