PNNL-22342-1

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Sequim Site Radionuclide Air Emissions Report for Calendar Year 2012

SF Snyder JM Barnett TL Gervais

April 2013

Proudly Operated by Battelle Since 1965

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY

operated by

BATTELLE

for the

UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
ph: (800) 553-6847
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

Department of Energy - Office of Science

Sequim Site Radionuclide Air Emissions Report for Calendar Year 2012

SF Snyder JM Barnett TL Gervais

April 2013

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99352

Summary

The U.S. Department of Energy Office of Science (DOE-SC) Marine Sciences Laboratory (MSL) located on the Sequim Site has two facilities with the potential to emit low levels of radioactive materials. This is the first Radioactive Air Emissions Report for the Sequim Site since DOE-SC contracted for exclusive use of its radiological operations effective October 1, 2012. The operations, which remain unchanged, were regulated previously as a private rather than DOE radiological air emissions facility.

This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, "National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities" and Washington Administrative Code (WAC) Chapter 246-247, "Radiation Protection—Air Emissions." This report meets the calendar year 2012 Sequim Site annual reporting requirement for its operations as a privately owned facility as well as its federally contracted status that began in October 2012.

Compliance is indicated by comparing the estimated effective dose equivalent (EDE) to the maximally exposed individual (MEI) with the 10 millirem per year (mrem/yr) U.S. Environmental Protection Agency (EPA) standard. The MSL contains only sources classified as fugitive emissions. Despite the fact that the regulations are intended for application to point source emissions, fugitive emissions are included with regard to complying with the EPA standard.

The EDE to the Sequim Site MEI due to routine operations in 2012 was 9E-06 mrem (9E-08 mSv). No non-routine emissions occurred in 2012. The MSL is in compliance with the federal and state 10 mrem/yr standard.

For further information concerning this report, you may contact Theresa L. Aldridge, U.S. Department of Energy, Pacific Northwest Site Office, by telephone at (509) 372 4508 or by e-mail at Theresa. Aldridge@pnso.science.doe.gov.

CERTIFICATION OF PNNL-22342-1

DOE-SC Sequim Site Radionuclide Air Emissions Report Calendar Year 2012

I certify under penalty of law that I have personally examined and am familiar with the information submitted herein and, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment. See, 18 U.S.C. 1001. [verbatim from 40 CFR 61, Subpart H, 61.94(b)(9)]

Roger E. Snyder, Manager U.S. Department of Energy Pacific Northwest Site Office 5/13/13 Date

Acronyms and Abbreviations

CFR Code of Federal Regulations

Ci curie

CY calendar year

DOE U.S. Department of Energy

DOE-SC U.S. Department of Energy, Office of Science

EDE effective dose equivalent

EPA U.S. Environmental Protection Agency HEPA high efficiency particulate air (filter)

km kilometer

Major a radioactive point source having a radiological dose potential of greater than

0.1 mrem/yr effective dose equivalent, based on emissions that would result if all pollution-control equipment did not exist but facility operations were otherwise normal

MEI maximally exposed individual

mi mile

Minor a radioactive point source having a radiological dose potential of less than or equal to

0.1 mrem/yr effective dose equivalent, based on emissions that would result if all pollution-control equipment did not exist but facility operations were otherwise normal

mrem millirem [i.e., 1 x 10⁻³ rem]

mSv millisievert NA not applicable

NESHAP National Emission Standards for Hazardous Air Pollutants

NOC Notice of Construction

PCM periodic confirmatory measurement
PNNL Pacific Northwest National Laboratory

PNSO Pacific Northwest Site Office

PTE potential-to-emit QA quality assurance

RAEL Radioactive Air Emissions License

rem roentgen equivalent man SD standard deviation

Sv sievert

UDF unit-release dose factor

WAC Washington Administrative Code

WDOH Washington State Department of Health

yr year

Contents

Sum	mary	iii
CER	TIFI	CATION OF PNNL-22342-1v
Acro	onym	s and Abbreviationsvii
1.0	Intro	oduction1
	1.1	Sequim Site Description
2.0	Rad	ionuclide Air Emissions
	2.1	Major, Minor, and Fugitive Emissions Points
3.0	Dos	e Assessment4
	3.1	Dose Model and Potential Receptors
	3.2	Compliance Assessment
4.0	Sup	plemental Information6
	4.1	Population Dose Estimate6
	4.2	Compliance Status with Subparts Q and T of 40 CFR 616
	4.3	Other Supplemental Information6
5.0	Refe	erences
App	endix	A COMPLY Unit Dose Factors
App		B List of Radioactive Materials Handled or Potentially Handled, or Authorized for Use e Sequim Site in 2012
		Figures
Figu	re 1.	1. Sequim Site in Northwestern Washington State
Figu	re 1.	2. Marine Sciences Laboratory, Sequim Site
		Tables
Tab	le 2.1	1. 2012 MSL Inventory and Emissions Estimates
Tab	le 3.1	L. COMPLY Input Parameters
Tab	le 3.2	2. Potential MEI Locations
Tab	le 3.3	3. Sequim Site 2012 Radionuclide Emissions and MEI Dose
Tab	le 4.1	L. Major U.S. Cities within 50 mi of the Sequim Site
Tab	le A.	1. Sequim Site Unit Dose Factors
Tab		1. List of Radioactive Materials Handled or Potentially Handled, or Authorized for Use e Sequim Site in 2012

1.0 Introduction

Pacific Northwest National Laboratory's (PNNL) Sequim Marine Research Operations (Sequim Site) was transitioned in October 2012 from private operation under Battelle Memorial Institute to an exclusive use contract with the U.S. Department of Energy, Office of Science, Pacific Northwest Site Office (DOE-SC PNSO). The Marine Sciences Laboratory (MSL) is a sub-region of the Sequim Site, which is located on the coast of Washington State's Olympic Peninsula (**Figure 1.1**).

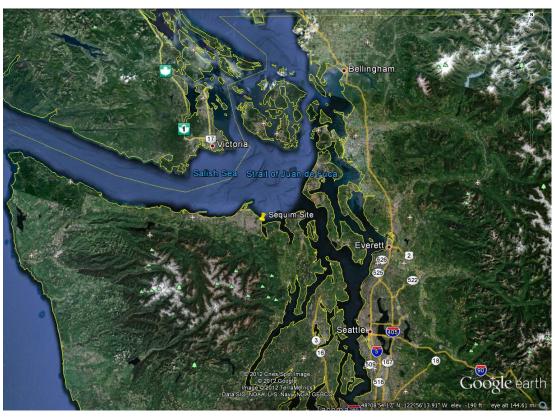


Figure 1.1. Sequim Site in Northwestern Washington State

Per prior discussions with the Washington Department of Health (WDOH), this radiological air emissions report meets the requirements for radiological National Emission Standards for Hazardous Air Pollutants (NESHAP) compliance reporting for both the private operations period and DOE exclusive use contract period for calendar year (CY) 2012.

1.1 Sequim Site Description

The Sequim Site on Washington State's Olympic Peninsula is DOE's only marine research laboratory. It lies on the shores of the Strait of Juan de Fuca and is in the rain shadow of the Olympic Mountains in Clallam County at approximate coordinates 48°04'40" N, 123°02'55" W. Despite its coastal location, it receives less than 15 inches of rainfall on average annually. Average monthly temperatures range from 31°F to 70°F. Nearby cities are Sequim (population 6,600), Port Angeles (population 19,000), and Port Townsend (population 9,100) (DOC 2011). Seattle is approximately 50 miles (mi) from the Sequim Site. The nearest sea border with Canada is about 17 mi from the Sequim Site in the Salish Sea; the nearest Canadian land border is about 25 mi NW from the Sequim Site.

The Sequim Site (**Figure 1.2**) encompasses 150 acres of uplands and lowlands about 7.5 acres of which has been developed for research operations. The research operations occur at several laboratories and other facilities in an area of the Sequim Site commonly referred to as the MSL, which includes analytical and general purpose laboratories and wet or support laboratories supplied with heated and cooled freshwater and seawater. There are two facilities at the MSL with the potential to emit low levels of radioactive material. In addition, the MSL has a state-of-the-art waste seawater treatment system and a dock facility for a 28-foot research vessel and a specialized scientific diving boat.

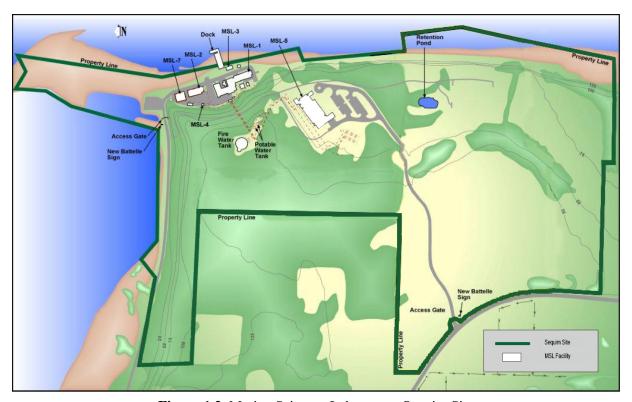


Figure 1.2. Marine Sciences Laboratory, Sequim Site

2.0 Radionuclide Air Emissions

The two registered emission units at the Sequim Site are described and emissions estimates for operations during CY 2012 presented.

2.1 Major, Minor, and Fugitive Emissions Points

The Sequim Site's MSL has two nonpoint source minor emission units associated with buildings MSL-1 and MSL-5 that are registered with the state of Washington under the Radioactive Air Emissions License (RAEL) - 014. These emission units are unchanged from when MSL was licensed as a private facility. Radioactive air emissions continue to be well below the criteria for classification as a minor emission unit (i.e., potential-to-emit [PTE] contribution is < 0.1 mrem/yr effective dose equivalent [EDE] to the MEI). Information regarding the radionuclides-of-concern, emission rates, and emission unit physical characteristics are described below.

The emission units under consideration for MSL include EP-MSL-1 and EP-MSL-5 (**Figure 1.2**). EP-MSL-1 is located on the tidelands, and EP-MSL-5 is located on the upland. The emission unit characteristics are the same for both MSL-1 and MSL-5. These buildings have several locations where radioactive air emissions may originate and exit the building. While they are not fugitive by definition, emissions are fugitive in nature; however, because emissions can come from several points within each building, the emission unit is characterized as a nonpoint source (WAC 2011). Emissions from each emission unit are identified as < 0.1 mrem/yr EDE and the associated registration PTEs indicate emission unit characteristic will primarily be particulates with building PTEs < 5 E-04 mrem/yr EDE.

Radiological operations at MSL emit very low levels of radioactive materials. <u>Appendix B</u> contains the full list of radionuclides that may be handled at the Sequim Site. The 2012 radioactive material emissions to the air are indicated in **Table 2.1**. The 40 CFR 61, Appendix D, method of determining unabated emissions was used. No credit was taken for abatement controls (e.g., HEPA filtration) at MSL-1 or MSL-5.

Table 2.1. 2012 MSL Inventory and Emissions Estimates

		Site	MSL-1	MSL-5
		Inventory	2012	2012
Nuclide	Emission Type	(Ci)	Release ^(a) (Ci)	Release ^(a) (Ci)
H-3	beta/gamma	1.37E-06	-	1.37E-09
C-14	beta/gamma	6.41E-07	-	6.41E-10
K-40	beta/gamma	4.78E-09	-	4.78E-12
Fe-55	beta/gamma	3.45E-11	-	3.45E-14
Co-57	beta/gamma	9.46E-12	-	9.46E-15
Co-60	beta/gamma	1.75E-11	-	1.75E-14
Sr-90	beta/gamma	8.32E-04	-	8.32E-13
Tc-99	beta/gamma	1.70E-07	-	1.70E-13
Ru-106	beta/gamma	4.05E-10	-	4.05E-13
Sb-125	beta/gamma	5.32E-10	-	5.32E-13
I-129	beta/gamma	1.15E-14	-	1.15E-17
Cs-134	beta/gamma	3.14E-09	-	3.14E-12
Cs-137	beta/gamma	1.35E-06	-	3.72E-11
Eu-152	beta/gamma	6.18E-11	-	6.18E-14
Eu-154	beta/gamma	1.68E-11	-	1.68E-14
Eu-155	beta/gamma	1.77E-11	-	1.77E-14
Pb-210	alpha	1.28E-10	-	1.28E-13
Po-208	alpha	6.96E-07	-	6.96E-10
Ra-226	alpha	2.98E-10	-	2.98E-13
Ra-228	alpha	4.96E-11	-	4.96E-14
Th-228	alpha	2.60E-10	-	2.60E-13
Th-230	alpha	1.53E-07	-	1.53E-13
Th-232	alpha	2.56E-10	-	2.56E-13
U-234	alpha	1.20E-09	8.33E-13	3.71E-13
U-235	alpha	5.58E-11	3.81E-14	1.77E-14
U-238	alpha	1.18E-09	8.28E-13	3.52E-13
Pu-238	alpha	8.16E-11	-	8.16E-14
Pu-239	alpha	7.48E-09	-	3.75E-13
Pu-240	alpha	3.75E-10	-	3.75E-13
Am-241	alpha	4.34E-10	-	4.34E-13
	TOTAL beta/gamma	1	0.00E+00	2.06E-09
TOTAL alpha 1.70E-12 6.99E-10				
(a) Emissions estimated using 40 CFR 61, Appendix D methods.				

3

3.0 Dose Assessment

The potential impact of radiological air emissions is described in this section. Dose is calculated in a similar manner to that done for prior years when the MSL was not a DOE facility. Radiological operations at the facility have not changed. A review of radiological assessment needs was published in the Data Quality Objects report (Barnett et al. 2012).

3.1 Dose Model and Potential Receptors

The COMPLY code Version 1.6 (Level 4) was used for estimating dose for comparison to the EPA standard of 10 mrem/yr EDE to any member of the public (40 CFR 61, Subpart H and WAC 246-247). This code is approved for use for compliance determination (40 CFR 61, Appendix E). Input parameters, originally reported in Barnett et al. (2012), were not changed (**Table 3.1**).

Table 3.1. COMPLY Input Parameters

	MSL Value
Parameter	(Level 4)
Nuclide names	<varies by="" year=""></varies>
Concentrations (Ci/m ³)	NA
Annual possession amount (Ci)	NA
Release rates (Ci/yr or Ci/s)	<varies by="" year=""></varies>
Release height (m)	8 m
Building height (m)	8 m
Stack or vent diameter (m)	NA
Volumetric flow rate (m ³ /s)	NA
Distance from source to receptor (m)	190 m ^(a)
Building width (m)	30 m
Wind speed (m/s)	2 m/s
Distances to sources of food production (m)	190 m ^(a)
Stack temperature (°F)	NA
Ambient air temperature (°F)	NA
Wind rose	NA(nwr) ^(b)
Building length	NA(nwr) ^(b)
NA = not applicable	
(a) Smallest receptor distance either MSL-1 or MSL-5 applied	
(b) $NA(nwr) = not$ applicable because n o wind r ose data is us	sed.

Potential receptor locations for 16 compass directions are provided in Table 3.2, as reported in Barnett et al. (2012), which concluded that continuation of the 190-m source-to-receptor distance used in prior evaluations would result in an over-estimate of any expected receptor impacts but would continue to be used. The nearest location where a member of the public would actually reside or abide (e.g., dwelling, business, school, office) relative to the MSL-1 or MSL-5 emissions locations was determined to be 270 m W or WNW. Given that winds blow predominantly toward the east (see Table 4.3 of Barnett et al. 2012), away from either of these 270 m receptors, an additional level of conservatism is included.

Table 3.2. Potential MEI Locations

Direction from MSL-1 or MSL-5	Smallest distance to MSL boundary	Smallest distance to Sequim Site boundary	Smallest distance to a receptor outside of Sequim Site boundary
N	-	-	1,790 m res ^(a)
NNE	-	-	39,700 m res ^(a)
NE	-	-	9,630 m res ^(a)
ENE	-	-	2,000 m res ^(a)
E	-	-	1,900 m res ^(a)
ESE	-	-	2,620 m res
SE	-	-	3,930 m res
SSE	180 m	-	4,470 m res
S	170 m	570 m	640 m res/farm
SSW	190 m	630 m	820 m res; 290 m farm
SW	170 m	360 m ^(a)	420 m res ^(a)
WSW	140 m	230 m	290 m res
W	130 m	220 m	270 m res
WNW	140 m	230 m	270 m res
NW	170 m	280 m	520 m res
NNW	240 m	-	1,000 m res/farm

A dash (-) = a shoreline location where no potential receptor could reside or abide. res = residence site

(a) Distance from MSL-1 applied; all others from MSL-5.

3.2 Compliance Assessment

The dose standard in 40 CFR 61, Subpart H, applies to radionuclide air emissions, other than radon, from DOE facilities. Dose is estimated as the product of the emission rate (Ci/yr) and unit dose factor (mrem/yr EDE at MEI location per Ci/yr released). Unit dose factors for a number of nuclides are indicated in Appendix A. The ²⁴¹Am unit dose factor was applied to all alpha-emitters and the ¹³⁷Cs unit dose factor was applied to all beta/gamma emitters, as a conservative measure. For CY2012, the Sequim Site MEI location was assumed to be 0.190 km (0.12 mi) from the emission point. The EDE to the MEI from routine and non-routine point source emissions was 9.2E-06 mrem (9.2E-08 mSv). Table 3.3 shows the relative contributions of each nuclide and facility to the MEI dose. In 2011, the MEI estimate was 1.2E-9 mrem/yr EDE. Although both the 2012 and 2011 dose estimates are far below the dose standard, the primary reason for the increase in the 2012 dose estimate is that no credit was taken for HEPA filtration in the 2012 emissions estimates as per the new DOE-SC radioactive air emissions license.

Table 3.3. Sequim Site 2012 Radionuclide Emissions and MEI Dose

	MSL-1	MSL-5	Total		
RELEASES (Ci)					
Beta/gamma	0	2.06E-09	2.06E-09		
Alpha	1.70E-12	6.99E-10	7.01E-10		
MEI EDE (mrem)					
Beta/gamma ^(a)	0	9.7E-07	9.7E-07		
Alpha ^(b)	2.0E-08	8.2E-06	8.2E-06		
Total (mrem)	2.0E-08	9.1E-06	9.2E-06		
DOSE CONTRIBUTION	(%)				
Beta/gamma	0%	11%	11%		
Alpha	100%	89%	89%		
(a) Unit dose factor for ¹³⁷ Cs applied to estimate dose.					
(b) Unit dose factor for ²⁴¹ An	applied to estima	te dose.			

¹ Memo from M. Sula (Sequim Site, Sequim, WA) to M. Barnett (PNNL, Richland, WA). 2012. "2011 NESHAP Airborne Radionuclide Emission Assessment" 27FEB2012, Battelle-Marine Sciences Laboratory, Sequim, WA.

4.0 Supplemental Information

This section provides supplemental information related to Sequim Site radionuclide air emissions in 2012. Supplemental information was requested as part of a Memorandum of Understanding between DOE and EPA (DOE 1995).

4.1 Population Dose Estimate

An estimated 132,000 people (on the U.S. side of the border) live within 30 mi of Sequim, WA; another estimated 1.45 million (U.S.) reside 30–50 mi from Sequim. The major cities at various distances are indicated in **Table 4.1**. Victoria, British Columbia is the only major Canadian city within 50 mi of the Sequim Site. The Victoria metropolitan area (20–30 mi distant) has an estimated population of 358,000, almost three times the entire U.S. population within 30 mi of the Sequim Site.

Distance (mi)	Major Cities
0–10	Sequim
10-20	Port Angeles (portion), Port Townsend
20-30	Port Angeles (portion), Oak Harbor
30–40	Anacortes, Bremerton (portion), Edmonds, Mukilteo, Poulsbo, Silverdale, Stanwood
40–50	Arlington, Bainbridge Island, Bothell, Bremerton (portion), Burlington, Edmonds, Everett, Kenmore, Kirkland, Lake Stevens, Lynnwood, Marysville, Mount Vernon, Mountlake Terrace, Port Orchard, Seattle (large portion), Snohomish

Table 4.1. Major U.S. Cities within 50 mi of the Sequim Site

The population dose is simply estimated. The MEI dose multiplied by the 30-mi U.S. population results in a population dose of 1.2E-3 person-rem. Applying this same method to the Victoria metropolitan area, all of which is 20-30 mi distant, would result in an additional 3.3E-3 person-rem.

4.2 Compliance Status with Subparts Q and T of 40 CFR 61

- No storage or disposal of radium bearing materials occurs at the Sequim Site; therefore, 40 CFR 61, Subpart Q does not apply to Sequim Site operations.
- No uranium mill tailings or ore disposal activities have been conducted at the Sequim Site; therefore, 40 CFR 61, Subpart T does not apply to Sequim Site operations.

4.3 Other Supplemental Information

- Radionuclide emission estimates and periodic confirmatory measurement information related to Notices of Construction (NOCs) is not used.
- The PNNL Radioactive Material Tracking system is used to manage potential emissions below permit thresholds resulting in overall confirmation of inventory limits and emissions estimates to respective NOCs.
- Quality assurance (QA) program status of compliance with 40 CFR 61, Appendix B, Method 114. No air sampling is conducted at the Sequim Site; therefore, the QA program compliance status with 40 CFR 61, Appendix B, Method 114 does not apply.

5.0 References

- 40 CFR 61, as amended. *National Emission Standards for Hazardous Air Pollutants* (NESHAP), Subpart H, "National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities."
- 40 CFR 61, as amended. *National Emission Standards for Hazardous Air Pollutants* (NESHAP), Subpart H, Appendix B to Part 61, "Test Methods."
- 40 CFR 61, as amended. *National Emission Standards for Hazardous Air Pollutants* (NESHAP), Subpart H, Appendix D to Part 61, "Methods for Estimating Radionuclide Emissions."
- 40 CFR 61, as amended. *National Emission Standards for Hazardous Air Pollutants* (NESHAP), Subpart H, Appendix E to Part 61, "Compliance Procedures Methods for Determining Compliance with Subpart I."
- 40 CFR 61, as amended. *National Emission Standards for Hazardous Air Pollutants* (NESHAP), Subpart Q, "National Emission Standards for Radon Emissions from Department of Energy Facilities."
- 40 CFR 61, as amended. *National Emission Standards for Hazardous Air Pollutants* (NESHAP), Subpart T, "National Emission Standards for Radon Emissions from the Disposal of Uranium Mill Tailings."
- Barnett JM, KM Meier, SF Snyder, EJ Antonio, BG Fritz, and TM Poston. 2012. *Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the Marine Sciences Laboratory, Sequim Site*. PNNL-22111, Pacific Northwest National Laboratory, Richland, WA.
- DOC—U.S. Department of Commerce. 2011. 2010 Census Summary File 1- Washington, 2010 Census of Population and Housing [wa_2010_sf1_asr_city.xlsx], U.S. Census Bureau, Department of Commerce, Washington, D.C. Last accessed at: http://www.ofm.wa.gov/pop/census2010/data.asp.
- DOE—U.S. Department of Energy. 1995. "Memorandum of Understanding Between the U.S. Environmental Protection Agency and the U.S. Department of Energy Concerning the Clean Air Act Emission Standards for Radionuclides 40 CFR Part 61 Including Subparts H, I, Q & T" (letter to E. Ramona, U.S. Environmental Protection Agency) from Raymond Berube, U.S. Department of Energy, Washington, D.C., May 16.
- DOE—U.S. Department of Energy. 2009. *Guide of Good Practices for Occupational Radiological Protection in Uranium Facilities*. DOE-STD-1136-2009. DOE, Washington, D.C.
- DOE—U.S. Department of Energy. 2010. *Calculating Potential-to-Emit Radiological Releases and Doses*. DOE/RL-2006-29, Rev1. Richland Operations Office, Richland, WA.
- DOE—U.S. Department of Energy. 2011. *Radiation Protection of the Public and the Environment*. DOE Order 458.1, admin chg 3. Office of Health, Safety and Security, Washington, D.C.
- EPA—U.S. Environmental Protection Agency. 1989. *User's Guide for the COMPLY Code*. EPA 520/1-89-003, U.S. Environmental Protection Agency, Office of Radiation and Indoor Air, Washington, D.C.

WAC—Washington Administrative Code. 2011. *Radiation Protection – Air Emissions*. WAC-246-247, Statutory Law Committee, Olympia, WA.

Appendix A COMPLY Unit Dose Factors

Appendix A COMPLY Unit Dose Factors

As originally reported in Barnett et al. 2012, COMPLY v1.6 was used to determine unit-release dose factors (UDFs), which represent impacts to a hypothetical receptor 190 m from the emission unit with an assumed 2 m/s wind speed and wind blowing toward the receptor 25 percent of the time. These assumptions are based on calculations of COMPLY v1.6 at Level 4 with no wind rose used. The appropriate solubility class to apply was based on those indicated in DOE 2010, and for ¹⁴C the COMPLY default classification was applied as the only option (EPA 1989). UDFs for radionuclides either in current inventory or previously used at the Sequim Site are presented.

Table A.1. Sequim Site Unit Dose Factors

•		Unit Dose Factor
Nuclide	COMPLY Solubility Class	(mrem EDE per Ci/yr released)
²⁴¹ Am ^(a)	W	11700
¹³³ Ba ^(b)	D	135
¹⁴ C ^(c)	"1"	1.5
¹⁰⁹ Cd	W	5.5
⁵⁷ Co	W	4.8
⁶⁰ Co	W	426
$^{137}\text{Cs}^{(a)}$	D	469
¹⁵⁴ Eu	W	345
¹⁵⁵ Eu	W	13.3
³ H ^(b)	V	0.004
^{125}I	D	84.5
¹²⁹ I	D	1250
⁵⁴ Mn	W	27.2
²² Na ^(b)	D	234
⁶³ Ni	W	0.3
²¹⁰ Pb ^(b)	D	1100
²³⁸ Pu	W	10300
²³⁹ Pu	W	11200
¹⁰⁶ Ru	W	13.9
⁹⁰ Sr ^(d)	Y	211
⁹⁹ Tc	W	32.7
²³⁴ U	Y	3450
²³⁵ U	Y	3470
²³⁸ U	Y	3110
Natural U ^(e)	Y	3290

Bold font = Alpha-emitting nuclides. All others are beta/gamma emitters.

⁽a) ²⁴¹Am is the surrogate alpha emitter for those not specifically listed; ¹³⁷Cs is the surrogate beta-emitter for those not specifically listed.

⁽b) The solubility class listed is the only option available in COMPLY v1.6.

⁽c) Default class of COMPLY v1.6 used.

⁽d) Solubility class W is preferred, but not an option. Class Y was used as an overestimating assumption.

⁽e) Determined from natural uranium mass fractions: 0.000055^{234} U; 0.0072^{235} U; 0.9928^{238} U (DOE 2009)

Appendix B

List of Radioactive Materials Handled or Potentially Handled, or Authorized for Use at the Sequim Site in 2012

Appendix B List of Radioactive Materials Handled or Potentially Handled, or Authorized for Use at the Sequim Site in 2012

Table B.1. List of Radioactive Materials Handled or Potentially Handled, or Authorized for Use at the Sequim Site in 2012

			~1				
Ac-225	C-14	Eu-152	K-42	Pb-210	Rb-86	Sn-126	T1-209
Ac-227	C-15	Eu-152m	Kr-81	Kr-83m	Rb-87	Sr-85	Tm-170
Ac-228	Ca-41	Eu-154	Kr-81m	Kr-85	Rb-88	Sr-87m	Tm-171
Ag-108	Ca-45	Eu-155	Kr-90	Kr-85m	Rb-89	Sr-89	U-232
Ag-108m	Ca-47	Eu-156	La-138	Kr-87	Rb-90	Sr-90	U-233
Ag-109m	Cd-109	Eu-157	La-140	Kr-88	Rb-90m	Sr-91	U-234
Ag-110	Cd-113	F-18	La-141	Kr-89	Re-186	Sr-92	U-235
Ag-110m	Cd-113m	Fe-55	La-142	Pb-211	Re-187	Ta-179	U-236
Ag-111	Cd-115	Fe-59	Lu-177	Pb-212	Re-188	Ta-182	U-237
Al-26	Cd-115m	Fr-221	Mg-27	Pb-214	Rh-102	Ta-183	U-238
Al-28	Ce-139	Fr-223	Mg-28	Pd-103	Rh-103m	Tb-160	U-239
Am-241	Ce-141	Ga-67	Mn-52	Pd-107	Rh-105	Tb-161	U-240
Am-242	Ce-142	Ga-72	Mn-54	Pd-109	Rh-105m	Tc-95m	V-48
Am-242m	Ce-143	Gd-148	Mn-56	Pm-145	Rh-106	Tc-97	V-49
Am-243	Ce-144	Gd-149	Mo-93	Pm-146	Rn-219	Tc-97m	W-181
Am-245	Cf-249	Gd-151	Mo-99	Pm-147	Rn-220	Tc-98	W-185
Ar-37	Cf-250	Gd-152	N-13	Pm-148	Rn-222	Tc-99	W-187
Ar-39	Cf-251	Gd-153	Na-22	Pm-148m	Rn-224	Tc-99m	W-188
Ar-41	Cf-252	Ge-68	Na-24	Pm-149	Ru-97	Tc-101	Xe-122
Ar-42	Cl-36	H-3	Nb-91	Pm-151	Ru-103	Te-121	Xe-123
As-74	Cm-241	Hf-175	Nb-91m	Po-208	Ru-105	Te-121m	Xe-125
As-76	Cm-242	Hf-178m	Nb-92	Po-209	Ru-106	Te-123	Xe-127
At-217	Cm-243	Hf-181	Nb-93m	Po-210	S-35	Te-123m	Xe-127m
Au-195	Cm-244	Hf-182	Nb-94	Po-211	Sb-122	Te-125m	Xe-129m
Au-198	Cm-245	Hg-203	Nb-95	Po-212	Sb-124	Te-127	Xe-131m
Ba-131	Cm-246	Ho-166	Nb-95m	Po-213	Sb-125	Te-127m	Xe-133
Ba-133	Cm-247	Ho-166m	Nb-97	Po-214	Sb-126	Te-129	Xe-133m
Ba-133m	Cm-248	I-122	Nb-97m	Po-215	Sb-126m	Te-129m	Xe-135
Ba-137m	Co-56	I-123	Nd-144	Po-216	Sb-127	Te-131	Xe-135m
Ba-139	Co-57	I-125	Nd-147	Po-218	Sb-129	Te-131m	Xe-137
Ba-140	Co-58	I-129	Ni-56	Pr-143	Sc-46	Te-132	Xe-138
Ba-141	Co-60	I-130	Ni-59	Pr-144	Sc-47	Te-133	Y-88
Ba-142	Cr-49	I-130m	Ni-63	Pr-144m	Se-75	Te-133m	Y-90
Be-7	Cr-51	I-131	Ni-65	Pu-234	Se-79	Te-134	Y-90m
Be-10	Cr-55	I-132	Np-235	Pu-236	Se-79m	Th-227	Y-91
Bi-207	Cs-131	I-132m	Np-236	Pu-237	Si-31	Th-228	Y-91m
Bi-210	Cs-132	I-133	Np-237	Pu-238	Si-32	Th-229	Y-92
Bi-211	Cs-134	I-133m	Np-238	Pu-239	Sm-145	Th-230	Y-93
Bi-212	Cs-134m	I-134	Np-239	Pu-240	Sm-146	Th-231	Yb-164
Bi-213	Cs-135	I-134m	Np-240	Pu-241	Sm-147	Th-232	Yb-169
Bi-214	Cs-136	I-135	Np-240m	Pu-242	Sm-151	Th-233	Yb-175
Bk-249	Cs-137	In-106	O-15	Pu-243	Sm-153	Th-234	Yb-177
Bk-250	Cs-138	In-111	Os-191	Pu-244	Sm-157	Ti-44	Zn-65
Br-82	Cs-139	In-113m	P-32	Ra-223	Sn-113	Ti-45	Zn-69
Br-82m	Cu-64	In-114	P-33	Ra-224	Sn-117m	Ti-51	Zn-69m
Br-83	Dy-165	In-114m	Pa-231	Ra-225	Sn-119m	Tl-201	Zr-88
Br-84	Er-169	In-115	Pa-233	Ra-226	Sn-121	Tl-204	Zr-89
Br-84m	Er-171	In-115m	Pa-234	Ra-228	Sn-121m	Tl-206	Zr-93
Br-85	Es-254	Ir-192	Pa-234m	Rb-83	Sn-123	Tl-207	Zr-95
C-11	Eu-150	K-40	Pb-209	Rb-84	Sn-125	T1-208	Zr-97
							Zr-100

Distribution

No. of Copies

City of SequimCity Manager152 W Cedar StSequim, WA 98382

S Burkett

Clallam County
 Department of Community Development
 223 East 4th Street, Suite 5
 Port Angeles, WA 98362

S Gray, Planning Manager

Clallam County Commissioners
 East 4th Street, Suite 4
 Port Angeles, WA 98362-3000

M Chapman, Commissioner J McEntire, Commissioner M Doherty, Commissioner

Clallam County Health & Human Services
 East 4th Street, Suite 14
 Port Angeles, WA 98362

A Brastad, Director

 Confederated Tribes of the Umatilla Indian Reservation
 Richland Office of Science and Engineering 750 Swift Boulevard, Suite 12
 Richland, WA 99352

S Harris, Director

Nez Perce Tribe
 Environmental Restoration and Waste
 Management
 PO Box 365
 Lapwai, ID 83540

G Bohnee

No. of Copies

 Olympic Region Clean Air Agency (ORCAA)
 2940 B Limited Lane NW Olympia, WA 98502

F McNair, Director

8 U.S. Department of Energy-Headquarters 1000 Independence Ave Washington, D.C. 20585

AC Lawrence	HS-30
JM Blaikie	SC-31.1
A Wallo III (3)	HS-20
T Traceski	HS-22
GA Vazquez	HS-22
R Natoli	HS-24

 U.S. Environmental Protection Agency Region 10
 Federal & Delegated Air Programs 1200 Sixth Avenue
 Seattle, WA 98101

N Helm, Manager (3) AWT-107 D Zhen AWT-107

 U.S. Environmental Protection Agency U.S. EPA
 1310 L Street, NW Room 553C
 Washington, D.C. 20005

R Rosnick

 Washington State Department of Ecology Hanford Project Office
 3100 Port of Benton Blvd Richland, WA 99354

R Skinnarland B5-18

ľ	No. of		N	o. of	
(<u>Copies</u>		C	opies	
2	Washington State Department of	Ecology		CP Beus	J2-56
	Air Quality Program			JH Brown	J2-25
	PO Box 47600			SD Cooke	K1-59
	Olympia, WA 98504-7600			EG Damberg	J2-25
	J 1 ,			RL Dirkes	K6-75
	J Johnston			CJ Duchsherer	J2-25
	R Hibbard			JP Duncan	K6-85
				DL Edwards	J2-25
2	Washington State Department of	Health		TJ Fortman	SEQUI
	WDOH – Office of Radiation Pro	otection		BG Fritz	K6-75
	PO Box 47827			TL Gervais	J2-25
	Olympia, WA 98504-7827			MD Hughes	SEQUI
				ML Johnson	K3-54
	A Grumbles, Program Manager (2)		CJ Nichols	J4-50
				BE Opitz	K6-75
5	Washington State Department of	Health		GW Patton	K6-75
	WDOH - Radioactive Air Emissi	ons Section		RD Sharp	J2-33
	309 Bradley Blvd., Suite 201			SF Snyder (2)	K3-54
	Richland, WA 99352			JA Stegen	K3-66
				MJ Stephenson	J2-25
	SD Berven	B1-42		HT Tilden II	K3-75
	PJ Martell, Manager (2)	B1-42		PNNL Reference Library (2)	P8-55
	JW Schmidt	B1-42		Rad Air File Plan A1.1.1.4	J2-25
	R Utley	B1-42			
_			1	U.S. Department of Energy	
2	Yakama Nation			Office of River Protection	
	Environmental Restoration Waste	e			
	Management Program			DW Bowser	H6-60
	P.O. Box 151		_	***	
	Toppenish, WA 98948		5	U.S. Department of Energy	
	D.T.			Pacific Northwest Site Office	
	R Jim			FF 41111 (2)	T70 10
	J Russell			TL Aldridge (2)	K9-42
	JOHNE			JL Carlson	K9-42
Or	<u>ISITE</u>			JW Christ	K9-42
2	Mission Support Alliance LLC			TP Pietrok	K9-42
2	Mission Support Alliance, LLC		5	IIC Department of Energy	
	TG Beam	H7-28	3	U.S. Department of Energy	
	DJ Rokkan	H7-28		Richland Operations Office	
	DJ KORKAII	117-20		DOE DI Dublia Danding Doom	H2-53
32	Pacific Northwest National Laboratory	ratory		DOE-RL Public Reading Room DE Jackson	A4-52
		J		MK Marvin	A4-52
	CM Andersen	K1-38		MD Silberstein	A4-52
	BG Anderson	J2-25		DC Ward	A4-32 A5-15
	EJ Antonio	K3-54		DC Walu	AJ-13
	JM Barnett (3)	J2-25			
	LE Bisping	K6-75			

Proudly Operated by Battelle Since 1965

902 Battelle Boulevard P.O. Box 999 Richland, WA 99352 1-888-375-PNNL (7665)

www.pnnl.gov